
Specification of Source §1—2021 edition

Martin Henz, Lee Ning Yuan, Daryl Tan

National University of Singapore
School of Computing

July 18, 2024

The language Source is the official language of the textbook Structure and Interpretation of
Computer Programs, JavaScript Adaptation. Source is a sublanguage of ECMAScript 2018 (9th

Edition) and defined in the documents titled “Source §x”, where x refers to the respective textbook
chapter.

1 Syntax

A Source program is a program, defined using Backus-Naur Form1 as follows:

1We adopt Henry Ledgard’s BNF variant that he described in A human engineered variant of BNF, ACM SIGPLAN
Notices, Volume 15 Issue 10, October 1980, Pages 57-62. In our grammars, we use bold font for keywords, italics for
syntactic variables, ϵ for nothing, x | y for x or y, [x] for an optional x, x... for zero or more repetitions of x, and (x) for
clarifying the structure of BNF expressions.

https://sourceacademy.org/sicpjs/
https://sourceacademy.org/sicpjs/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

SICP, JavaScript Adaptation, Source §1, 2021 2

program ::= import-directive... statement... program

import-directive ::= import { import-names } from string ; import directive

import-names ::= ϵ | import-name (, import-name)... import name list

import-name ::= name | name as name import name

statement ::= const name = expression ; constant declaration

| function name (names) block function declaration

| return expression ; return statement

| if-statement conditional statement

| block block statement

| expression ; expression statement

| debugger ; breakpoint

names ::= ϵ | name (, name)... name list

if-statement ::= if (expression) block

else (block | if-statement) conditional statement

block ::= { statement... } block statement

expression ::= number primitive number expression

| true | false primitive boolean expression

| string primitive string expression

| name name expression

| expression binary-operator expression binary operator combination

| unary-operator expression unary operator combination

| expression binary-logical expression logical composition

| expression (expressions) function application

| (name | (names)) => expression lambda expression (expr. body)

| (name | (names)) => block lambda expression (block body)

| expression ? expression : expression conditional expression

| (expression) parenthesised expression

binary-operator ::= + | - | * | / | % | === | !==
| > | < | >= | <= binary operator

unary-operator ::= ! | - unary operator

binary-logical ::= && | || logical composition symbol

expressions ::= ϵ | expression (, expression)... argument expressions

https://sourceacademy.org/sicpjs/3.1.1#p6
https://sourceacademy.org/sicpjs/1.1.2#p2
https://sourceacademy.org/sicpjs/1.1.4#p4
https://sourceacademy.org/sicpjs/1.1.4#p4
https://sourceacademy.org/sicpjs/1.3.2#p13
https://sourceacademy.org/sicpjs/1.1.8#p14
https://sourceacademy.org/sicpjs/1.1.1#p3
https://sourceacademy.org/sicpjs/1.1.4#p4
https://sourceacademy.org/sicpjs/1.3.3#footnote-1
https://sourceacademy.org/sicpjs/1.3.2#p12
https://sourceacademy.org/sicpjs/1.1.8#p14
https://sourceacademy.org/sicpjs/1.1.1#p3
https://sourceacademy.org/sicpjs/1.1.6#p1
https://sourceacademy.org/sicpjs/2.3.1
https://sourceacademy.org/sicpjs/1.1.2
https://sourceacademy.org/sicpjs/1.1.1#p5
https://sourceacademy.org/sicpjs/1.1.6#p4
https://sourceacademy.org/sicpjs/1.1.6#p5
https://sourceacademy.org/sicpjs/1.1.4#p5
https://sourceacademy.org/sicpjs/1.3.2
https://sourceacademy.org/sicpjs/2.2.4#footnote-3
https://sourceacademy.org/sicpjs/1.1.6#p1
https://sourceacademy.org/sicpjs/1.1.1#p6
https://sourceacademy.org/sicpjs/1.1.1#p4
https://sourceacademy.org/sicpjs/1.1.6#p4
https://sourceacademy.org/sicpjs/1.1.6#p5
https://sourceacademy.org/sicpjs/1.1.4#p5

SICP, JavaScript Adaptation, Source §1, 2021 3

Restrictions

• Return statements are only allowed in bodies of functions.

• There cannot be any newline character between return and expression in return state-
ments.2

• There cannot be any newline character between (name | (parameters)) and => in function
definition expressions.3

• Implementations of Source are allowed to treat function declaration as syntactic sugar for
constant declaration.4 Source programmers need to make sure that functions are not called
before their corresponding function declaration is evaluated.

Import directives

Import directives allow programs to import values from modules and bind them to names, whose
scope is the entire program in which the import directive occurs. Import directives can only
appear at the top-level. All names that appear in import directives must be distinct, and must
also be distinct from all top-level variables. The Source specifications do not specify how modules
are programmed.

Logical Composition

Conjunction

expression1 && expression2

stands for
expression1 ? expression2 : false

Disjunction

expression1 || expression2

stands for
expression1 ? true : expression2

Names

Names5 start with _, $ or a letter6 and contain only _, $, letters or digits7. Restricted words8 are
not allowed as names.
Valid names are x, _45, $$ and π, but always keep in mind that programming is communicating
and that the familiarity of the audience with the characters used in names is an important aspect
of program readability.

Numbers

We use decimal notation for numbers, with an optional decimal dot. “Scientific notation” (multi-
plying the number with 10x) is indicated with the letter e, followed by the exponent x. Examples
for numbers are 5432, -5432.109, and -43.21e-45.

2Source inherits this syntactic quirk of JavaScript.
3ditto
4ECMAScript prescribes “hoisting” of function declarations to the beginning of the surrounding block. Programs

that rely on this feature will run fine in JavaScript but might encounter a runtime error “Cannot access name before
initialization” in a Source implementation.

5In ECMAScript 2020 (9th Edition), these names are called identifiers.
6By letter we mean Unicode letters (L) or letter numbers (NI).
7By digit we mean characters in the Unicode categories Nd (including the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), Mn,

Mc and Pc.
8By restricted word we mean any of: arguments, await, break, case, catch, class, const, continue, debugger,

default, delete, do, else, enum, eval, export, extends, false, finally, for, function, if, implements, import,
in, instanceof, interface, let, new, null, package, private, protected, public, return, static, super, switch,
this, throw, true, try, typeof, var, void, while, with, yield. These are all words that cannot be used without
restrictions as names in the strict mode of ECMAScript 2020.

https://sourceacademy.org/sicpjs/1.3.2#footnote-2
https://sourceacademy.org/sicpjs/1.3.2#footnote-2
https://sourceacademy.org/sicpjs/1.1.6#p4
https://sourceacademy.org/sicpjs/1.1.6#p4
https://sourceacademy.org/sicpjs/1.1.1#p3
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://unicode.org/reports/tr44/
http://unicode.org/reports/tr44/

SICP, JavaScript Adaptation, Source §1, 2021 4

Strings

Strings are of the form "double-quote-characters", where double-quote-characters is a possi-
bly empty sequence of characters without the character " and without the newline character,
of the form ’single-quote-characters’, where single-quote-characters is a possibly empty se-
quence of characters without the character ’ and without the newline character, and of the form
‘backquote-characters‘, where backquote-characters is a possibly empty sequence of characters
without the character ‘. Note that newline characters are allowed as backquote-characters.
The following characters can be represented in strings as given:

• horizontal tab: \t

• vertical tab: \v

• nul char: \0

• backspace: \b

• form feed: \f

• newline: \n

• carriage return: \r

• single quote: \’

• double quote: \"

• backslash: \\

Unicode characters can be used in strings using \u followed by the hexadecimal representation
of the unicode character, for example ’\uD83D\uDC04’.

Comments

In Source, any sequence of characters between “/*” and the next “*/” is ignored.
After “//” any characters until the next newline character is ignored.

2 Dynamic Type Checking

Expressions evaluate to numbers, boolean values, strings or function values. Implementations
of Source generate error messages when unexpected values are used as follows.
Only function values can be applied using the syntax:

expression ::= name(expressions)

For compound functions, implementations need to check that the number of expressions matches
the number of parameters.
The following table specifies what arguments Source’s operators take and what results they
return. Implementations need to check the types of arguments and generate an error message
when the types do not match.

https://sourceacademy.org/sicpjs/2.3.1
https://sourceacademy.org/sicpjs/2.2.3#footnote-8

SICP, JavaScript Adaptation, Source §1, 2021 5

operator argument 1 argument 2 result
+ number number number
+ string string string
- number number number
* number number number
/ number number number
% number number number

=== number number bool
=== string string bool
!== number number bool
!== string string bool
> number number bool
> string string bool
< number number bool
< string string bool
>= number number bool
>= string string bool
<= number number bool
<= string string bool
&& bool any any
|| bool any any
! bool bool
- number number

Preceding ? and following if, Source only allows boolean expressions.

3 Standard Library

The standard library contains constants and functions that are always available in this language.
The functions indicated as primitive are built into the language implementations. All others are
considered predeclared and implemented using the primitive functions.
The standard library for Source § 1 is documented in online documentation of Source § 1.

Deviations from JavaScript

We intend the Source language to be a conservative extension of JavaScript: Every correct
Source program should behave exactly the same using a Source implementation, as it does
using a JavaScript implementation. We assume, of course, that suitable libraries are used by
the JavaScript implementation, to account for the predefined names of each Source language.
This section lists some exceptions where we think a Source implementation should be allowed to
deviate from the JavaScript specification, for the sake of internal consistency and esthetics.

Evaluation result of programs: JavaScript statically distinguishes between value-producing and
non-value-producing statements. All declarations are non-value-producing, and all expres-
sion statements, conditional statements and assignments are value-producing. A block is
value-producing if its body statement is value-producing, and then its value is the value of
its body statement. A sequence is value-producing if any of its component statements is
value-producing, and then its value is the value of its last value-producing component state-
ment. The value of an expression statement is the value of the expression. The value of a
conditional statement is the value of the branch that gets executed, or the value undefined
if that branch is not value-producing. The value of an assignment is the value of the ex-
pression to the right of its = sign. Finally, if the whole program is not value-producing, its
value is the value undefined.

Example 1:

1;
{

// empty block
}

https://sourceacademy.org/sicpjs/3.3.4#p24
https://sourceacademy.org/sicpjs/4.1.1#footnote-4

SICP, JavaScript Adaptation, Source §1, 2021 6

The result of evaluating this program in JavaScript is 1.

Example 2:

1;
{

if (true) {} else {}
}

The result of evaluating this program in JavaScript is undefined.

Implementations of Source are currently allowed to opt for a simpler scheme.

Hoisting of function declarations: In JavaScript, function declarations are “hoisted” (automagi-
cally moved) to the beginning of the block in which they appear. This means that applica-
tions of functions that are declared with function declaration statements never fail because
the name is not yet assigned to their function value. The specification of Source does not
include this hoisting; in Source, function declaration can be seen as syntactic sugar for
constant declaration and lambda expression. As a consequence, application of functions
declared with function declaration may fail in Source if the name that appears as function
expression is not yet assigned to the function value it is supposed to refer to.

https://sourceacademy.org/sicpjs/1.3.2#footnote-2
https://sourceacademy.org/sicpjs/4.3.1#footnote-4
https://sourceacademy.org/sicpjs/4.3.1#footnote-4

	Syntax
	Dynamic Type Checking
	Standard Library

