
Specification of Source §1 Typed—2023 edition

Martin Henz, Jingjing Zhao

National University of Singapore
School of Computing

June 13, 2025

The language Source is the official language of the textbook Structure and Interpretation of Com-
puter Programs, JavaScript Adaptation. Source is a sublanguage of ECMAScript 2018 (9th Edi-
tion) and defined in the documents titled “Source §x”, where x refers to the respective textbook
chapter.
Source §1 Typed is a variant of Source §1 that introduces type syntax and type checking.

1 Syntax

A Source program is a program, defined using Backus-Naur Form1 as follows:

program ::= import-directive... type-alias... statement... program

import-directive ::= import { import-names } from string ; import directive

import-names ::= ϵ | import-name (, import-name)... import name list

import-name ::= name | name as name import name

type-alias ::= type name[< name (, name)... >] = alias-type;type alias declaration

statement ::= const name[: type] = expression ; constant declaration

| function name (names)[: type] block function declaration

| return expression ; return statement

| if-statement conditional statement

| block block statement

| expression ; expression statement

| debugger ; breakpoint

names ::= ϵ | name[: type] (, name[: type])... name list

typed-names ::= ϵ | name: type (, name: type)... name list (typed)

if-statement ::= if (expression) block
else (block | if-statement) conditional statement

block ::= { statement... } block statement

expression ::= number primitive number expression

| true | false primitive boolean expression

| string primitive string expression

| name name expression

| expression binary-operator expression binary operator combination

| unary-operator expression unary operator combination

1We adopt Henry Ledgard’s BNF variant that he described in A human engineered variant of BNF, ACM SIGPLAN
Notices, Volume 15 Issue 10, October 1980, Pages 57-62. In our grammars, we use bold font for keywords, italics for
syntactic variables, ϵ for nothing, x | y for x or y, [x] for an optional x, x... for zero or more repetitions of x, and (x) for
clarifying the structure of BNF expressions.

https://sourceacademy.org/sicpjs/
https://sourceacademy.org/sicpjs/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://sourceacademy.org/sicpjs/3.1.1#p6
https://sourceacademy.org/sicpjs/1.1.2#p2
https://sourceacademy.org/sicpjs/1.1.4#p4
https://sourceacademy.org/sicpjs/1.1.4#p4
https://sourceacademy.org/sicpjs/1.3.2#p13
https://sourceacademy.org/sicpjs/1.1.8#p14
https://sourceacademy.org/sicpjs/1.1.1#p3
https://sourceacademy.org/sicpjs/1.1.4#p4
https://sourceacademy.org/sicpjs/1.1.4#p4
https://sourceacademy.org/sicpjs/1.3.3#footnote-1
https://sourceacademy.org/sicpjs/1.3.2#p12
https://sourceacademy.org/sicpjs/1.1.8#p14
https://sourceacademy.org/sicpjs/1.1.1#p3
https://sourceacademy.org/sicpjs/1.1.6#p1
https://sourceacademy.org/sicpjs/2.3.1
https://sourceacademy.org/sicpjs/1.1.2
https://sourceacademy.org/sicpjs/1.1.1#p5
https://sourceacademy.org/sicpjs/1.1.6#p4

SICP, JavaScript Adaptation, Source §1 Typed, 2023 2

| expression binary-logical expression logical composition

| expression (expressions) function application

| (names) => expression lambda expression (expr. body)

| (names) => block lambda expression (block body)

| expression ? expression : expression conditional expression

| (expression) parenthesised expression

| expression as type as expression

binary-operator ::= + | - | * | / | % | === | !==
| > | < | >= | <= binary operator

unary-operator ::= ! | - unary operator

binary-logical ::= && | || logical composition symbol

expressions ::= ϵ | expression (, expression)... argument expressions

type ::= number | boolean | string
| undefined | void | any basic type

| number | string | true | false literal type

| name[< type (, type)... >] type reference

| (typed-names) => type function type

| type | type union type

alias-type ::= number | boolean | string
| undefined | void | any basic type

| number | string | true | false literal type

| name[< alias-type (, alias-type)... >] type reference

| (typed-names) => alias-type function type

| alias-type | alias-type union type

| name type parameter

https://sourceacademy.org/sicpjs/1.1.6#p5
https://sourceacademy.org/sicpjs/1.1.4#p5
https://sourceacademy.org/sicpjs/1.3.2
https://sourceacademy.org/sicpjs/2.2.4#footnote-3
https://sourceacademy.org/sicpjs/1.1.6#p1
https://sourceacademy.org/sicpjs/1.1.1#p6
https://sourceacademy.org/sicpjs/1.1.1#p4
https://sourceacademy.org/sicpjs/1.1.6#p4
https://sourceacademy.org/sicpjs/1.1.6#p5
https://sourceacademy.org/sicpjs/1.1.4#p5

SICP, JavaScript Adaptation, Source §1 Typed, 2023 3

Restrictions

• Return statements are only allowed in bodies of functions.

• There cannot be any newline character between return and expression in return state-
ments.2

• There cannot be any newline character between (name | (parameters)) and => in function
definition expressions.3

• Implementations of Source are allowed to treat function declaration as syntactic sugar for
constant declaration.4 Source programmers need to make sure that functions are not called
before their corresponding function declaration is evaluated.

Import directives

Import directives allow programs to import values from modules and bind them to names, whose
scope is the entire program in which the import directive occurs. Import directives can only
appear at the top-level. All names that appear in import directives must be distinct, and must
also be distinct from all top-level variables. The Source specifications do not specify how modules
are programmed.

Logical Composition

Conjunction

expression1 && expression2

stands for
expression1 ? expression2 : false

Disjunction

expression1 || expression2

stands for
expression1 ? true : expression2

Names

Names5 start with _, $ or a letter6 and contain only _, $, letters or digits7. Restricted words8 are
not allowed as names.
Valid names are x, _45, $$ and π, but always keep in mind that programming is communicating
and that the familiarity of the audience with the characters used in names is an important aspect
of program readability.

Numbers

We use decimal notation for numbers, with an optional decimal dot. “Scientific notation” (multi-
plying the number with 10x) is indicated with the letter e, followed by the exponent x. Examples
for numbers are 5432, -5432.109, and -43.21e-45.

2Source inherits this syntactic quirk of JavaScript.
3ditto
4ECMAScript prescribes “hoisting” of function declarations to the beginning of the surrounding block. Programs

that rely on this feature will run fine in JavaScript but might encounter a runtime error “Cannot access name before
initialization” in a Source implementation.

5In ECMAScript 2020 (9th Edition), these names are called identifiers.
6By letter we mean Unicode letters (L) or letter numbers (NI).
7By digit we mean characters in the Unicode categories Nd (including the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), Mn,

Mc and Pc.
8By restricted word we mean any of: arguments, await, break, case, catch, class, const, continue, debugger,

default, delete, do, else, enum, eval, export, extends, false, finally, for, function, if, implements, import,
in, instanceof, interface, let, new, null, package, private, protected, public, return, static, super, switch,
this, throw, true, try, typeof, var, void, while, with, yield. These are all words that cannot be used without
restrictions as names in the strict mode of ECMAScript 2020.

https://sourceacademy.org/sicpjs/1.3.2#footnote-2
https://sourceacademy.org/sicpjs/1.3.2#footnote-2
https://sourceacademy.org/sicpjs/1.1.6#p4
https://sourceacademy.org/sicpjs/1.1.6#p4
https://sourceacademy.org/sicpjs/1.1.1#p3
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://unicode.org/reports/tr44/
http://unicode.org/reports/tr44/

SICP, JavaScript Adaptation, Source §1 Typed, 2023 4

Strings

Strings are of the form "double-quote-characters", where double-quote-characters is a possi-
bly empty sequence of characters without the character " and without the newline charac-
ter, of the form ’single-quote-characters’, where single-quote-characters is a possibly empty se-
quence of characters without the character ’ and without the newline character, and of the form
‘backquote-characters‘, where backquote-characters is a possibly empty sequence of characters
without the character ‘. Note that newline characters are allowed as backquote-characters.
The following characters can be represented in strings as given:

• horizontal tab: \t

• vertical tab: \v

• nul char: \0

• backspace: \b

• form feed: \f

• newline: \n

• carriage return: \r

• single quote: \’

• double quote: \"

• backslash: \\

Unicode characters can be used in strings using \u followed by the hexadecimal representation
of the unicode character, for example ’\uD83D\uDC04’.

Comments

In Source, any sequence of characters between “/*” and the next “*/” is ignored.
After “//” any characters until the next newline character is ignored.

2 Type System

In Source §1 Typed, the Source §1 syntax is expanded to include type syntax such as type
annotations and type aliases. This allows names to be explicitly typed, and for type checks to be
performed.
Support for typeof operations is also added to Source §1 Typed.

2.1 Type Environment

In order to keep track of the type of names in a program, we define a type environment, denoted
by Γ. More formally, the partial function Γ from names to types expresses a context, in which a
name x is associated with type Γ(x).
We define a relation Γ[x← t]Γ′ on type environments Γ, names x, types t, and type environments
Γ′, which constructs a type environment that behaves like the given one, except that the type of
x is t. More formally, if Γ[x ← t]Γ′, then Γ′(y) is t, if y = x and Γ(y) otherwise. Obviously, this
uniquely identifies Γ′ for a given Γ, x, and t, and thus the type environment extension relation is
functional in its first three arguments.
The set of names, on which a type environment Γ is defined, is called the domain of Γ, denoted
by dom(Γ).
For each non-overloaded primitive operator, we add a binding to our initial type environment Γ0

as follows:

https://sourceacademy.org/sicpjs/2.3.1
https://sourceacademy.org/sicpjs/2.2.3#footnote-8

SICP, JavaScript Adaptation, Source §1 Typed, 2023 5

∅[−2 ← (number,number)→ number]

[∗ ← (number,number)→ number]

[/← (number,number)→ number]

[%← (number,number)→ number]

[&&← (boolean,T)→ boolean | T]
[|| ← (boolean,T)→ boolean | T]
[!← boolean→ boolean]

[−1 ← number→ number]

[typeof← any→ string]Γ−2

The overloaded binary primitives (with the exception of +, the handling of which will be elaborated
in Typing Relations) are handled as follows:

Γ−2[===← (string, string)→ boolean | (number, number)→ boolean]

[!==← (string, string)→ boolean | (number, number)→ boolean]

[>← (string, string)→ boolean | (number, number)→ boolean]

[>=← (string, string)→ boolean | (number, number)→ boolean]

[<← (string, string)→ boolean | (number, number)→ boolean]

[<=← (string, string)→ boolean | (number, number)→ boolean]Γ−1

The Source §1 standard library functions and constants have their types defined as follows:
Γ−1 [display ← any]

[error ← any]
[Infinity ← number]
[is_boolean ← any → boolean]
[is_function ← any → boolean]
[is_number ← any → boolean]
[is_string ← any → boolean]
[is_undefined ← any → boolean]
[math_abs ← number → number]
[math_acos ← number → number]
[math_acosh ← number → number]
[math_asin ← number → number]
[math_asinh ← number → number]
[math_atan ← number → number]
[math_atan2 ← (number,number) → number]
[math_atanh ← number → number]
[math_cbrt ← number → number]
[math_ceil ← number → number]
[math_clz32 ← number → number]
[math_cos ← number → number]
[math_cosh ← number → number]
[math_exp ← number → number]
[math_expm1 ← number → number]
[math_floor ← number → number]
[math_fround ← number → number]
[math_hypot ← any]
[math_imul ← (number,number) → number]
[math_LN2 ← number]
[math_LN10 ← number]
[math_log ← number → number]
[math_log1p ← number → number]
[math_log2 ← number → number]

SICP, JavaScript Adaptation, Source §1 Typed, 2023 6

[math_LOG2E ← number]
[math_log10 ← number → number]
[math_LOG10E ← number]
[math_max ← any]
[math_min ← any]
[math_PI ← number]
[math_pow ← (number,number) → number]
[math_random ← () → number]
[math_round ← number → number]
[math_sign ← number → number]
[math_sin ← number → number]
[math_sinh ← number → number]
[math_sqrt ← number → number]
[math_SQRT1_2 ← number]
[math_SQRT2 ← number]
[math_tan ← number → number]
[math_tanh ← number → number]
[math_trunc ← number → number]
[NaN ← number]
[parse_int ← (string,number) → number]
[prompt ← string → string]
[get_time ← () → number]
[stringify ← any → string]
[undefined ← undefined] Γ0

In order to support the definition of type aliases, we define a separate type alias environment, de-
noted by Γalias. Unlike Γ, Γalias binds names to special type functions of the form < T1, . . . , Tn >→ t
where T1 . . . Tn are type parameters t is the return type expressed in terms of T1 . . . Tn. <> is used
to differentiate type functions from function types, which are of the form (t1, . . . , tn)→ t.
Since Γ and Γalias are separate environments, the same name x can be used for both variables
and type aliases.

2.2 Success Types

In order for type checks to be performed in Source §1 Typed, we introduce the notion of success
types.
We first define the special any type:

Definition 2.1 any is the union of all possible types.

Success typing in Source Typed is defined as follows:

Definition 2.2 Type t′ is a success type of type t if ∃x(x ∈ t ∧ x ∈ t′). Alternatively: t ∧ t′ ̸= ∅.

In Source Typed, type checks are performed by checking that the actual type is a success type
of the expected type. This means that type errors will be thrown if and only if a definite clash in
types at runtime is detected. Given that any is the union of all possible types, this also means
that the any type is guaranteed not to produce any type errors.

2.3 Typing Relations

To perform type checking on the program, typing relations are applied to every statement and
expression in the program.
Names that do not have a type declared will be assumed to have the any type.

2.3.1 Typing Relations on Expressions

The derived type of primitive expressions is their literal type, which is an element of its corre-
sponding basic type.

SICP, JavaScript Adaptation, Source §1 Typed, 2023 7

Γ,Γalias ⊢ n : literal type n Γ,Γalias ⊢ s : literal type s

where n denotes any literal number and s denotes any literal string.

Γ,Γalias ⊢ true : literal type true Γ,Γalias ⊢ false : literal type false

For names, the type must be derived from the type environment.

Γ,Γalias ⊢ x : Γ(x)

For function applications (including applications of binary and unary operators), the following
two type rules are used, depending on the type of E0.

Γ,Γalias ⊢ E0 : (t1, . . . , tn)→ t Γ,Γalias ⊢ E1 : t′1, . . . ,Γ,Γalias ⊢ En : t′n (∀1 ≤ i ≤ n)(t′i ∧ ti ̸= ∅)

Γ,Γalias ⊢ E0 (E1, . . . , En) : t

Γ,Γalias ⊢ E0 : any Γ,Γalias ⊢ E1 : t′1, . . . ,Γ,Γalias ⊢ En : t′n

Γ,Γalias ⊢ E0 (E1, . . . , En) : any

The type of the operator must be a function type with the right number of parameters, and
the type of every argument must be a success type of the corresponding parameter type of the
function type. If all of the conditions are met, the type of the function application is the same as
the return type of the function type that is the type of the operator. If the type of the operator is
any, the return type will be any.
Applications of binary and unary operators are treated the same as function applications, with
the exception of the + operator. We use the ⊆ operator to indicate that a type is a subset of
another type, as defined below:

• A type is a subset of type number if it is of type number, literal number type, or a union type
containing any number of literal number types.

• A type is a subset of type string if it is of type string, literal string type, or a union type
containing any number of literal string types.

For the + operator, the following rules are applied, in order of priority:

1. If the expression on the left side is a subset of type number, check that the other expression
is a success type of number. The return type is number.

2. If the expression on the left side is a subset of type string, check that the other expression
is a success type of string. The return type is string.

3. If the expression on the right side is a subset of type number, check that the other expression
is a success type of number. The return type is number.

4. If the expression on the right side is a subset of type string, check that the other expression
is a success type of string. The return type is string.

5. If the expression on the left side cannot be narrowed to a subset of either number or
string, check that both sides are success types of number | string. The return type is
number | string.

SICP, JavaScript Adaptation, Source §1 Typed, 2023 8

Γ,Γalias ⊢ E0 : t0 Γ,Γalias ⊢ E1 : t1 t0 ⊆ number t1 ∧ number ̸= ∅

Γ,Γalias ⊢ E0 + E1 : number

Γ,Γalias ⊢ E0 : t0 Γ,Γalias ⊢ E1 : t1 t0 ⊆ string t1 ∧ string ̸= ∅

Γ,Γalias ⊢ E0 + E1 : string

Γ,Γalias ⊢ E0 : t0 Γ,Γalias ⊢ E1 : t1 t1 ⊆ number t0 ∧ number ̸= ∅

Γ,Γalias ⊢ E0 + E1 : number

Γ,Γalias ⊢ E0 : t0 Γ,Γalias ⊢ E1 : t1 t1 ⊆ string t0 ∧ string ̸= ∅

Γ,Γalias ⊢ E0 + E1 : string

Γ,Γalias ⊢ E0 : t0 Γ,Γalias ⊢ E1 : t1 t0 ∧ (number | string) ̸= ∅ t1 ∧ (number | string) ̸= ∅

Γ,Γalias ⊢ E0 + E1 : number | string

For lambda expressions, we temporarily extend Γ with the declared types of all the function
parameters, and check the type of the function body against the declared return type. As type
syntax is optional, if type annotations are absent for any of the arguments or the return type,
the type is assumed to be any. The type of the lambda expression is then the function type with
the declared types of the parameters and the return type.

Γ[x1 ← t1] · · · [xn ← tn] ⊢ S : t′ t′ ∧ t ̸= ∅

Γ,Γalias ⊢ (x1 : t1, . . . , xn : tn) : t => S : (t1, . . . , tn)→ t

The type of a conditional expression is the union of the type of its consequent expression and
its alternate expression. The predicate expression of a conditional expression must be a success
type of a boolean.

Γ,Γalias ⊢ Epred : tpred Γ,Γalias ⊢ Econs : tcons Γ,Γalias ⊢ Ealt : talt tpred ∧ boolean ̸= ∅

Γ,Γalias ⊢ Epred ? Econs : Ealt : tcons | talt

For as expressions, the type to cast the expression to must be a success type of the type of the
expression.

Γ,Γalias ⊢ E : t′ t ∧ t′ ̸= ∅

Γ,Γalias ⊢ E as t : t

2.3.2 Typing Relations on Statements

Sequences in the top level are handled using the following steps:

1. Type alias declarations are evaluated, which adds type aliases to Γalias to construct Γ′
alias.

2. The declared types of constant declarations are added to Γ to construct Γ′. Note that the
declaration statements themselves are yet to be checked.

SICP, JavaScript Adaptation, Source §1 Typed, 2023 9

3. All statements are checked using Γ′ and Γ′
alias.

4. The type of the sequence is the type of the last value-producing statement.

In the below rule, Dn denotes constant declarations of the form const xn: tn = En;. If the type
annotation for xn is absent, the declared type tn is assumed to be any.

Γalias ⊢ A1 : Γalias1, . . . ,Γaliasm−1 ⊢ Am : Γ′
alias Γ[x1 ← t1] · · · [xn ← tn]Γ

′

Γ′,Γ′
alias ⊢ D1 : t1, . . . ,Γ

′,Γ′
alias ⊢ Dn : tn Γ′,Γ′

alias ⊢ S1 : t′1, . . . ,Γ
′,Γ′

alias ⊢ Sp : t′p

Γ,Γalias ⊢ {A1, . . . , Am, D1, . . . , Dn, S1, . . . , Sp} : t′p,Γ′,Γ′
alias

For type alias declarations, the declared type t for type alias name T is first checked against
the type environments. Any type parameters declared are temporarily added to the type alias
environment when checking the type of t to ensure that the type parameters are only used within
t itself. Then, the binding of T to type function < T1, . . . , Tn >→ t is added to the type alias
environment. If no type parameters are given, the type function is assumed to take in 0 type
arguments.

Γ,Γalias ⊢ t : t Γalias[T ←<>→ t]Γ′
alias

Γ,Γalias ⊢ type T = t; : undefined,Γ′
alias

Γ,Γalias[T1 ← T1] . . . [Tn ← Tn] ⊢ t : t Γalias[T ←< T1, . . . , Tn >→ t]Γ′
alias

Γ,Γalias ⊢ type T < T1, . . . , Tn >= t; : undefined,Γ′
alias

For constant declarations, the declared type t is retrieved from the type environment. If the
declared type is a type reference to a type alias with name T , t is obtained by applying the type
arguments t1, . . . , tn to the type function for T , replacing all instances of type variables T1, . . . , Tn

in t with t1, . . . , tn respectively.
The derived type of the expression E, tE, must be a success type of t. The type of the statement
itself is undefined.

Γ ⊢ E : tE tE ∧ t ̸= ∅

Γ,Γalias ⊢ const x: t = E; : undefined

Γalias(T) < t1, . . . , tn >= t Γ ⊢ E : tE tE ∧ t ̸= ∅

Γ,Γalias ⊢ const x: T < t1, . . . , tn >= E; : undefined

The type of return statements and expression statements is the type of the expression in the
statement.

Γ,Γalias ⊢ E : t

Γ,Γalias ⊢ return E; : t

Γ,Γalias ⊢ E : t

Γ,Γalias ⊢ E; : t

For blocks, Γ is first extended temporarily to include the types of names declared in the block.
Then, the component statements are checked against the extended type environment.
For function body blocks and if statement blocks, we assume that whenever there is a return
statement or a conditional statement with a return statement within a block, it is the last state-
ment in the block. (One could consider a “dead code” error otherwise.)

SICP, JavaScript Adaptation, Source §1 Typed, 2023 10

The type of a function body or if statement block is the type of the return statement in the block.
If the block does not contain any return statements, the type is void, which is a special type
that is used to denote the return type of a function that does not return anything, and changes
to undefined if unioned with another type that is not void.
In the below rule, Dn denotes constant declarations of the form const xn: tn = En;. If the type
annotation for xn is absent, the declared type tn is assumed to be any.

Γ[x1 ← t1] · · · [xm ← tm]Γtemp Γtemp ⊢ D1 : t1, . . . ,Γtemp ⊢ Dm : tm Γtemp ⊢ S1 : t′1, . . . ,Γtemp ⊢ Sn : t′n

Γ,Γalias ⊢ {D1, . . . , Dm, S1, . . . , Sn} :

{
t′n Sn is a return statement
void Sn is not a return statement

The type of a block that is not a function body or if statement block is the type of last value-
producing statement in the block.
In the below rule, Dn denotes constant declarations of the form const xn: tn = En;. If the type
annotation for xn is absent, the declared type tn is assumed to be any. We also assume that Sk

is the last value-producing statement in the block.

Γ[x1 ← t1] · · · [xm ← tm]Γtemp Γtemp ⊢ D1 : t1, . . . ,Γtemp ⊢ Dm : tm Γtemp ⊢ S1 : t′1, . . . ,Γtemp ⊢ Sn : t′n

Γ,Γalias ⊢ {D1, . . . , Dm, S1, . . . , Sn} : t′k

The type of a conditional statement or if statement is the union of the type of its consequent
statement and its alternate statement. The predicate expression of a conditional statement must
be a success type of a boolean.

Γ,Γalias ⊢ Spred : tpred Γ,Γalias ⊢ Scons : tcons Γ,Γalias ⊢ Salt : talt tpred ∧ boolean ̸= ∅

Γ,Γalias ⊢ if (Spred) Scons else Salt : tcons | talt

3 Dynamic Type Checking

Expressions evaluate to numbers, boolean values, strings or function values. Implementations
of Source generate error messages when unexpected values are used as follows.
Only function values can be applied using the syntax:

expression ::= name(expressions)

For compound functions, implementations need to check that the number of expressions matches
the number of parameters.
The following table specifies what arguments Source’s operators take and what results they
return. Implementations need to check the types of arguments and generate an error message
when the types do not match.

SICP, JavaScript Adaptation, Source §1 Typed, 2023 11

operator argument 1 argument 2 result
+ number number number
+ string string string
- number number number
* number number number
/ number number number
% number number number

=== number number bool
=== string string bool
!== number number bool
!== string string bool
> number number bool
> string string bool
< number number bool
< string string bool
>= number number bool
>= string string bool
<= number number bool
<= string string bool
&& bool any any
|| bool any any
! bool bool
- number number

Preceding ? and following if, Source only allows boolean expressions.

4 Standard Library

The standard library contains constants and functions that are always available in this language.
The functions indicated as primitive are built into the language implementations. All others are
considered predeclared and implemented using the primitive functions.

MISC Library

The following names are provided by the MISC library:

• get_time(): primitive, returns number of milliseconds elapsed since January 1, 1970
00:00:00 UTC

• parse_int(s, i): primitive, interprets the string s as an integer, using the positive integer
i as radix, and returns the respective value, see ECMAScript Specification, Section 18.2.5.

• undefined, NaN, Infinity: primitive, refer to JavaScript’s undefined, NaN (“Not a Number”)
and Infinity values, respectively.

• is_boolean(x), is_number(x), is_string(x), is_undefined(x), is_function(x): prim-
itive, returns true if the type of x matches the function name and false if it does not.
Following JavaScript, we specify that is_number returns true for NaN and Infinity.

• prompt(s): primitive, pops up a window that displays the string s, provides an input line
for the user to enter a text, a “Cancel” button and an “OK” button. The call of prompt
suspends execution of the program until one of the two buttons is pressed. If the “OK”
button is pressed, prompt returns the entered text as a string. If the “Cancel” button is
pressed, prompt returns a non-string value.

• display(x): primitive, displays the value x in the console9; returns the argument a.

• display(x, s): primitive, displays the string s, followed by a space character, followed by
the value x in the console9; returns the argument x.

9The notation used for the display of values is consistent with JSON, but also displays undefined and function
objects.

https://sourceacademy.org/sicpjs/3.3.4#p24
https://sourceacademy.org/sicpjs/1.2.6#ex_1.22
https://www.ecma-international.org/ecma-262/9.0/index.html#sec-parseint-string-radix
https://sourceacademy.org/sicpjs/2.4.3#p6
https://www.ecma-international.org/ecma-262/9.0/index.html#sec-value-properties-of-the-global-object-nan
https://www.ecma-international.org/ecma-262/9.0/index.html#sec-value-properties-of-the-global-object-infinity
https://sourceacademy.org/sicpjs/4.1.2#p2
https://sourceacademy.org/sicpjs/2.3.2#p5
https://sourceacademy.org/sicpjs/2.3.2#p7
https://sourceacademy.org/sicpjs/4.1.2#p2
https://sourceacademy.org/sicpjs/1.2.6#footnote-7
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

SICP, JavaScript Adaptation, Source §1 Typed, 2023 12

• error(x): primitive, displays the value x in the console9 with error flag. The evaluation of
any call of error aborts the running program immediately.

• error(x, s): primitive, displays the string s, followed by a space character, followed by
the value x in the console9 with error flag. The evaluation of any call of error aborts the
running program immediately.

• stringify(x): primitive, returns a string that represents9 the value x.

All library functions can be assumed to run in O(1) time, except display, error and stringify,
which run in O(n) time, where n is the size (number of components such as pairs) of their first
argument.

MATH Library

The following names are provided by the MATH library:

• math_name, where name is any name specified in the JavaScript Math library, see
ECMAScript Specification, Section 20.2. Examples:

– math_PI: primitive, refers to the mathematical constant π,

– math_sqrt(n): primitive, returns the square root of the number n.

All math functions can be assumed to run in O(1) time and are considered primitive. All math
functions expect numbers as arguments and return numbers. We don’t specify the behavior of a
math function when some arguments are not numbers.

Deviations from JavaScript

We intend the Source language to be a conservative extension of JavaScript: Every correct
Source program should behave exactly the same using a Source implementation, as it does
using a JavaScript implementation. We assume, of course, that suitable libraries are used by
the JavaScript implementation, to account for the predefined names of each Source language.
This section lists some exceptions where we think a Source implementation should be allowed to
deviate from the JavaScript specification, for the sake of internal consistency and esthetics.

Evaluation result of programs: JavaScript statically distinguishes between value-producing and
non-value-producing statements. All declarations are non-value-producing, and all expres-
sion statements, conditional statements and assignments are value-producing. A block is
value-producing if its body statement is value-producing, and then its value is the value of
its body statement. A sequence is value-producing if any of its component statements is
value-producing, and then its value is the value of its last value-producing component state-
ment. The value of an expression statement is the value of the expression. The value of a
conditional statement is the value of the branch that gets executed, or the value undefined
if that branch is not value-producing. The value of an assignment is the value of the ex-
pression to the right of its = sign. Finally, if the whole program is not value-producing, its
value is the value undefined.

Example 1:

1;
{

// empty block
}

The result of evaluating this program in JavaScript is 1.

Example 2:

1;
{

if (true) {} else {}
}

https://sourceacademy.org/sicpjs/1.2.6#footnote-7
https://sourceacademy.org/sicpjs/2.1.3#footnote-2
https://sourceacademy.org/sicpjs/3.3.4#p24
https://sourceacademy.org/sicpjs/1.1.4#p8
https://www.ecma-international.org/ecma-262/9.0/index.html#sec-math-object
https://sourceacademy.org/sicpjs/4.1.1#footnote-4

SICP, JavaScript Adaptation, Source §1 Typed, 2023 13

The result of evaluating this program in JavaScript is undefined.

Implementations of Source are currently allowed to opt for a simpler scheme.

Hoisting of function declarations: In JavaScript, function declarations are “hoisted” (automag-
ically moved) to the beginning of the block in which they appear. This means that applica-
tions of functions that are declared with function declaration statements never fail because
the name is not yet assigned to their function value. The specification of Source does not
include this hoisting; in Source, function declaration can be seen as syntactic sugar for
constant declaration and lambda expression. As a consequence, application of functions
declared with function declaration may fail in Source if the name that appears as function
expression is not yet assigned to the function value it is supposed to refer to.

https://sourceacademy.org/sicpjs/1.3.2#footnote-2
https://sourceacademy.org/sicpjs/4.3.1#footnote-4
https://sourceacademy.org/sicpjs/4.3.1#footnote-4

	Syntax
	Type System
	Type Environment
	Success Types
	Typing Relations
	Typing Relations on Expressions
	Typing Relations on Statements

	Dynamic Type Checking
	Standard Library

