
Specification of Source §1 WebAssembly—2021 edition

Bernard Teo Zhi Yi

National University of Singapore
School of Computing

June 13, 2025

The language Source is the official language of the textbook Structure and Interpretation of Com-
puter Programs, JavaScript Adaptation. Source is a sublanguage of ECMAScript 2018 (9th Edi-
tion) and defined in the documents titled “Source §x”, where x refers to the respective textbook
chapter.
Source §1 WebAssembly is the dialect of Source §1 used in Sourceror, an experimental compiler
from Source §1 to WebAssembly. This dialect is mostly similar to Source §1.

1 Changes compared to Vanilla Source §1

Language

All language features of Source §1 are supported except for proper tail calls.
Source §1 WebAssembly additionally supports proper modules – it is possible to import external
modules from the web, and such modules are also written in Source §1 WebAssembly. The
import and export syntax follow that of ECMAScript modules.

Libraries

The standard libraries (MISC and MATH) are supported with explicit import statements. There
are two differences: Source §1 WebAssembly does not support true varargs, so functions like
math_max() only support up to two arguments; and stringifying a function does not output the
literal function body.
Other self-hosted libraries may also be used as long as they are implemented in Source §1
WebAssembly.

Error Handling

Compilation errors produce error messages with line numbers, just like in Source §1. Runtime
type errors currently produce error messages without any location information.

2 Syntax

A Source program is a program, defined using Backus-Naur Form1 as follows:

1We adopt Henry Ledgard’s BNF variant that he described in A human engineered variant of BNF, ACM SIGPLAN
Notices, Volume 15 Issue 10, October 1980, Pages 57-62. In our grammars, we use bold font for keywords, italics for
syntactic variables, ϵ for nothing, x | y for x or y, [x] for an optional x, x... for zero or more repetitions of x, and (x) for
clarifying the structure of BNF expressions.

https://sourceacademy.org/sicpjs/
https://sourceacademy.org/sicpjs/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

SICP, JavaScript Adaptation, Source §1 WebAssembly, 2021 2

program ::= import-directive ... statement ... program

import-directive ::= import { import-names } from string ; import directive

import-names ::= ϵ | import-name (, import-name) ... import name declarations

import-name ::= name | name as name import name declaration

export-directive ::= export { export-names } ; export directive

export-names ::= ϵ | export-name (, export-name) ... export name declarations

export-name ::= name | name as name export name declaration

statement ::= const name = expression ; constant declaration

| function name (parameters) block function declaration

| return expression ; return statement

| if-statement conditional statement

| block block statement

| expression ; expression statement

parameters ::= ϵ | name (, name) ... function parameters

if-statement ::= if (expression) block
else (block | if-statement) conditional statement

block ::= { statement ... } block statement

expression ::= number primitive number expression

| true | false primitive boolean expression

| string primitive string expression

| name name expression

| expression binary-operator expression binary operator combination

| unary-operator expression unary operator combination

| expression binary-logical expression logical composition

| expression (expressions) function application

| (name | (parameters)) => expression lambda expression (expr. body)

| (name | (parameters)) => block lambda expression (block body)

| expression ? expression : expression conditional expression

| (expression) parenthesised expression

binary-operator ::= + | - | * | / | % | === | !==
| > | < | >= | <= binary operator

unary-operator ::= ! | - unary operator

binary-logical ::= && | || logical composition symbol

expressions ::= ϵ | expression (, expression) ... argument expressions

https://sourceacademy.org/sicpjs/3.1.1#p6
https://sourceacademy.org/sicpjs/1.1.2#p2
https://sourceacademy.org/sicpjs/1.1.4#p4
https://sourceacademy.org/sicpjs/1.1.4#p4
https://sourceacademy.org/sicpjs/1.3.2#p13
https://sourceacademy.org/sicpjs/1.1.8#p14
https://sourceacademy.org/sicpjs/1.1.1#p3
https://sourceacademy.org/sicpjs/1.1.4#p4
https://sourceacademy.org/sicpjs/1.3.3#footnote-1
https://sourceacademy.org/sicpjs/1.3.2#p12
https://sourceacademy.org/sicpjs/1.1.8#p14
https://sourceacademy.org/sicpjs/1.1.1#p3
https://sourceacademy.org/sicpjs/1.1.6#p1
https://sourceacademy.org/sicpjs/2.3.1
https://sourceacademy.org/sicpjs/1.1.2
https://sourceacademy.org/sicpjs/1.1.1#p5
https://sourceacademy.org/sicpjs/1.1.6#p4
https://sourceacademy.org/sicpjs/1.1.6#p5
https://sourceacademy.org/sicpjs/1.1.4#p5
https://sourceacademy.org/sicpjs/1.3.2
https://sourceacademy.org/sicpjs/2.2.4#footnote-3
https://sourceacademy.org/sicpjs/1.1.6#p1
https://sourceacademy.org/sicpjs/1.1.1#p6
https://sourceacademy.org/sicpjs/1.1.1#p4
https://sourceacademy.org/sicpjs/1.1.6#p4
https://sourceacademy.org/sicpjs/1.1.6#p5
https://sourceacademy.org/sicpjs/1.1.4#p5

SICP, JavaScript Adaptation, Source §1 WebAssembly, 2021 3

Restrictions

• Return statements are only allowed in bodies of functions.

• There cannot be any newline character between return and expression in return state-
ments.2

• There cannot be any newline character between (name | (parameters)) and => in function
definition expressions.3

• Implementations of Source are allowed to treat function declaration as syntactic sugar for
constant declaration.4 Source programmers need to make sure that functions are not called
before their corresponding function declaration is evaluated.

Import directives

Import directives allow programs to import values from modules and bind them to names, whose
scope is the entire program in which the import directive occurs. Import directives can only
appear at the top-level. All names that appear in import directives must be distinct, and must
also be distinct from all top-level variables.
The import graph must not contain cycles.

Importable module types

The module being imported must either be a Source §1 WebAssembly module (the usual kind of
module) or a Source Imports module.

Import filenames

The module name can be an absolute URL (e.g. https://www.example.com/my_modules/
module.source) or a relative URL (e.g. std/misc.source). If the file extension is ".source",
it may be omitted.
An absolute URL will fetch the module from the specified URL.
A relative URL will fetch the module from an implementation-defined location.

Export directives

Export directives allow programs to export values from modules and bind them to names, so that
they can be imported by other modules. Export directives can only appear at the top-level, and
hence can only export top-level variables.

Logical Composition

Conjunction

expression1 && expression2

stands for
expression1 ? expression2 : false

Disjunction

expression1 || expression2

stands for
expression1 ? true : expression2

2Source inherits this syntactic quirk of JavaScript.
3ditto
4ECMAScript prescribes “hoisting” of function declarations to the beginning of the surrounding block. Programs

that rely on this feature will run fine in JavaScript but might encounter a runtime error “Cannot access name before
initialization” in a Source implementation.

https://sourceacademy.org/sicpjs/1.3.2#footnote-2
https://sourceacademy.org/sicpjs/1.3.2#footnote-2
https://sourceacademy.org/sicpjs/1.1.6#p4
https://sourceacademy.org/sicpjs/1.1.6#p4

SICP, JavaScript Adaptation, Source §1 WebAssembly, 2021 4

Names

Names5 start with _, $ or a letter6 and contain only _, $, letters or digits7. Restricted words8 are
not allowed as names.
Valid names are x, _45, $$ and π, but always keep in mind that programming is communicating
and that the familiarity of the audience with the characters used in names is an important aspect
of program readability.

Numbers

We use decimal notation for numbers, with an optional decimal dot. “Scientific notation” (multi-
plying the number with 10x) is indicated with the letter e, followed by the exponent x. Examples
for numbers are 5432, -5432.109, and -43.21e-45.

Strings

Strings are of the form "double-quote-characters", where double-quote-characters is a possi-
bly empty sequence of characters without the character " and without the newline charac-
ter, of the form ’single-quote-characters’, where single-quote-characters is a possibly empty se-
quence of characters without the character ’ and without the newline character, and of the form
‘backquote-characters‘, where backquote-characters is a possibly empty sequence of characters
without the character ‘. Note that newline characters are allowed as backquote-characters.
The following characters can be represented in strings as given:

• horizontal tab: \t

• vertical tab: \v

• nul char: \0

• backspace: \b

• form feed: \f

• newline: \n

• carriage return: \r

• single quote: \’

• double quote: \"

• backslash: \\

Unicode characters can be used in strings using \u followed by the hexadecimal representation
of the unicode character, for example ’\uD83D\uDC04’.

Comments

In Source, any sequence of characters between “/*” and the next “*/” is ignored.
After “//” any characters until the next newline character is ignored.

5In ECMAScript 2020 (9th Edition), these names are called identifiers.
6By letter we mean Unicode letters (L) or letter numbers (NI).
7By digit we mean characters in the Unicode categories Nd (including the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), Mn,

Mc and Pc.
8By restricted word we mean any of: arguments, await, break, case, catch, class, const, continue, debugger,

default, delete, do, else, enum, eval, export, extends, false, finally, for, function, if, implements, import,
in, instanceof, interface, let, new, null, package, private, protected, public, return, static, super, switch,
this, throw, true, try, typeof, var, void, while, with, yield. These are all words that cannot be used without
restrictions as names in the strict mode of ECMAScript 2020.

https://sourceacademy.org/sicpjs/1.1.1#p3
https://sourceacademy.org/sicpjs/2.3.1
https://sourceacademy.org/sicpjs/2.2.3#footnote-8
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://unicode.org/reports/tr44/
http://unicode.org/reports/tr44/

SICP, JavaScript Adaptation, Source §1 WebAssembly, 2021 5

3 Function Attributes

This feature may only be used in modules other than the main module.
Function declarations may be annotated with attributes. Attributes are a key-value map that
modify the function declaration that it is applied to. The exact syntax of attributes are unstable,
but their semantics are unlikely to change. The following attributes are recognised:

• direct: This attribute key should be specified without a value. If present, the function
declaration it is applied to shall not capture any non-toplevel variables, and shall behave
as if it is declared as the first statement of the scope that it is in. Such functions are called
direct functions. Implementations are encouraged to emit direct calls instead of indirect
calls.

• constraint: The value shall be a map that specifies the signature of the function declara-
tion that it is applied to (for example x:number,y:number specifies that the parameters x
and y are both numbers). If a parameter is not mentioned in this attribute value, the type
defaults to any, meaning that there is no constraint on the parameter value. A function
declaration with a constraint attribute must also be a direct function. Implementations
are required to raise a runtime error if such a function is called with wrong actual argument
types.

Runtime overloading

Multiple declarations of direct functions with the same name are allowed, subject to the rules
described in this section.
At runtime, a call expression is said to match a direct function if the call expression has the
same number of arguments as the direct function, and the actual argument values of the call
expression have types that fit into each parameter type of the direct function.
A direct function f is said to shadow a direct function g if f and g have the same name and every
call expression that matches g also matches f.
Two direct functions f and g with the same name, where f appears earlier than g, are allowed to
coexist only if, either:

• f and g are not in the same scope (and hence would not have been subject to the usual
ECMAScript repeated-declaration rules), or

• g does not shadow f.

Overload resolution

At runtime, when a call expression is encountered that attempts to call a function f, the following
algorithm is used to determine the overload to call:

1. If there is a variable f accessible from the current scope, the normal behaviour of EC-
MAScript is used - we assert that f is indeed a function, and then try to call it.

2. Otherwise, we do the following:

(a) Collect all direct function declarations of f into a list, ordered so that earlier (i.e. fur-
ther) declarations come before later (i.e. nearer) declarations. Declarations in imports
are also collected and ordered in a manner such that declarations from the file being
imported come before declarations from the file containing the import statement. The
import ordering rule applies transitively to chains of imports. Where multiple orderings
satisfy the above constraints, implementations may use any valid ordering.

(b) If there is at least one matching function declaration, the latest matching declaration
is used. Otherwise, an error is raised.

A name that refers to a possibly overloaded direct function may appear in an expression or
statement at any position (called the bind site) where a lambda expression would have been
valid. Such a value behaves as if it is a non-direct function, except that when it is invoked, the
actual arguments at the call site are matched against the function declarations visible at the
bind site, using the overload resolution rules above.

SICP, JavaScript Adaptation, Source §1 WebAssembly, 2021 6

The exact implementation details of binding direct functions is left unspecified. Implementations
are encouraged to perform overload resolution at the call site in O(n) time, where n is the number
of function declarations in the list; and construct the overloaded function value at the bind site
in O(1) time.

4 Dynamic Type Checking

Expressions evaluate to numbers, boolean values, strings or function values. Implementations
of Source generate error messages when unexpected values are used as follows.
Only function values can be applied using the syntax:

expression ::= name(expressions)

For compound functions, implementations need to check that the number of expressions matches
the number of parameters.
The following table specifies what arguments Source’s operators take and what results they
return. Implementations need to check the types of arguments and generate an error message
when the types do not match.

operator argument 1 argument 2 result
+ number number number
+ string string string
- number number number
* number number number
/ number number number
% number number number

=== number number bool
=== string string bool
!== number number bool
!== string string bool
> number number bool
> string string bool
< number number bool
< string string bool
>= number number bool
>= string string bool
<= number number bool
<= string string bool
&& bool any any
|| bool any any
! bool bool
- number number

Preceding ? and following if, Source only allows boolean expressions.

5 Source Imports Modules

Source Imports modules provide a foreign function interface from Source to the host environ-
ment.
A Source Imports module declares functions that are implemented in the host environment,
allowing Source programs to use them. It is satisfies the following syntax:

• The first line must be exactly @SourceImports.

• Subsequent lines are either empty, or are foreign-import-statements that satisfy the following
syntax

https://sourceacademy.org/sicpjs/3.3.4#p24

SICP, JavaScript Adaptation, Source §1 WebAssembly, 2021 7

foreign-import-statement ::= exported-name host-namespace FFI import statement

host-entity return-type param-types

exported-name ::= name exported name

host-namespace ::= name host namespace name

host-entity ::= name host entity name

return-type ::= undefined | number | string return type

param-types ::= param-type . . . export name declarations

param-type ::= number | string param type

Each foreign-import-statement declares the signature of a host-implemented function identified
by the pair (host-namespace, host-entity), and exports it from the current Source Imports module
as exported-name as if it was a direct function.
Overloading behaves in the same way as direct functions.
The list of host-implemented functions available to Source §1 WebAssembly is implementation-
defined, and behaviour is often dependent on the host environment.

6 Standard Libraries

The following libraries are always available in this language.
Names must be imported explicitly before being used. The MISC library can be imported as
"std/misc" and the MATH library can be imported as "std/math".
For example, import { get_time } from "std/misc"; will import the get_time() function.

MISC Library

The following names are provided by the MISC library:

• get_time(): primitive, returns number of milliseconds elapsed since January 1, 1970
00:00:00 UTC

• parse_int(s, i): primitive, interprets the string s as an integer, using the positive integer
i as radix, and returns the respective value, see ECMAScript Specification, Section 18.2.5.

• undefined, NaN, Infinity: primitive, refer to JavaScript’s undefined, NaN (“Not a Number”)
and Infinity values, respectively.

• is_boolean(x), is_number(x), is_string(x), is_undefined(x), is_function(x): prim-
itive, returns true if the type of x matches the function name and false if it does not.
Following JavaScript, we specify that is_number returns true for NaN and Infinity.

• prompt(s): primitive, pops up a window that displays the string s, provides an input line
for the user to enter a text, a “Cancel” button and an “OK” button. The call of prompt
suspends execution of the program until one of the two buttons is pressed. If the “OK”
button is pressed, prompt returns the entered text as a string. If the “Cancel” button is
pressed, prompt returns a non-string value.

• display(x): primitive, displays the value x in the console9; returns the argument a.

• display(x, s): primitive, displays the string s, followed by a space character, followed by
the value x in the console9; returns the argument x.

• error(x): primitive, displays the value x in the console9 with error flag. The evaluation of
any call of error aborts the running program immediately.

9The notation used for the display of values is consistent with JSON, but also displays undefined and function
objects.

https://sourceacademy.org/sicpjs/1.2.6#ex_1.22
https://www.ecma-international.org/ecma-262/9.0/index.html#sec-parseint-string-radix
https://sourceacademy.org/sicpjs/2.4.3#p6
https://www.ecma-international.org/ecma-262/9.0/index.html#sec-value-properties-of-the-global-object-nan
https://www.ecma-international.org/ecma-262/9.0/index.html#sec-value-properties-of-the-global-object-infinity
https://sourceacademy.org/sicpjs/4.1.2#p2
https://sourceacademy.org/sicpjs/2.3.2#p5
https://sourceacademy.org/sicpjs/2.3.2#p7
https://sourceacademy.org/sicpjs/4.1.2#p2
https://sourceacademy.org/sicpjs/1.2.6#footnote-7
https://sourceacademy.org/sicpjs/1.2.6#footnote-7
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

SICP, JavaScript Adaptation, Source §1 WebAssembly, 2021 8

• error(x, s): primitive, displays the string s, followed by a space character, followed by
the value x in the console9 with error flag. The evaluation of any call of error aborts the
running program immediately.

• stringify(x): primitive, returns a string that represents9 the value x.

All library functions can be assumed to run in O(1) time, except display, error and stringify,
which run in O(n) time, where n is the size (number of components such as pairs) of their first
argument.

MATH Library

The following names are provided by the MATH library:

• math_name, where name is any name specified in the JavaScript Math library, see
ECMAScript Specification, Section 20.2. Examples:

– math_PI: primitive, refers to the mathematical constant π,

– math_sqrt(n): primitive, returns the square root of the number n.

All math functions can be assumed to run in O(1) time and are considered primitive. All math
functions expect numbers as arguments and return numbers. We don’t specify the behavior of a
math function when some arguments are not numbers.

Deviations from JavaScript

We intend the Source language to be a conservative extension of JavaScript: Every correct
Source program should behave exactly the same using a Source implementation, as it does
using a JavaScript implementation. We assume, of course, that suitable libraries are used by
the JavaScript implementation, to account for the predefined names of each Source language.
This section lists some exceptions where we think a Source implementation should be allowed to
deviate from the JavaScript specification, for the sake of internal consistency and esthetics.

Evaluation result of programs: JavaScript statically distinguishes between value-producing and
non-value-producing statements. All declarations are non-value-producing, and all expres-
sion statements, conditional statements and assignments are value-producing. A block is
value-producing if its body statement is value-producing, and then its value is the value of
its body statement. A sequence is value-producing if any of its component statements is
value-producing, and then its value is the value of its last value-producing component state-
ment. The value of an expression statement is the value of the expression. The value of a
conditional statement is the value of the branch that gets executed, or the value undefined
if that branch is not value-producing. The value of an assignment is the value of the ex-
pression to the right of its = sign. Finally, if the whole program is not value-producing, its
value is the value undefined.

Example 1:

1;
{

// empty block
}

The result of evaluating this program in JavaScript is 1.

Example 2:

1;
{

if (true) {} else {}
}

The result of evaluating this program in JavaScript is undefined.

Implementations of Source are currently allowed to opt for a simpler scheme.

https://sourceacademy.org/sicpjs/2.1.3#footnote-2
https://sourceacademy.org/sicpjs/3.3.4#p24
https://sourceacademy.org/sicpjs/1.1.4#p8
https://www.ecma-international.org/ecma-262/9.0/index.html#sec-math-object
https://sourceacademy.org/sicpjs/4.1.1#footnote-4

SICP, JavaScript Adaptation, Source §1 WebAssembly, 2021 9

Hoisting of function declarations: In JavaScript, function declarations are “hoisted” (automag-
ically moved) to the beginning of the block in which they appear. This means that applica-
tions of functions that are declared with function declaration statements never fail because
the name is not yet assigned to their function value. The specification of Source does not
include this hoisting; in Source, function declaration can be seen as syntactic sugar for
constant declaration and lambda expression. As a consequence, application of functions
declared with function declaration may fail in Source if the name that appears as function
expression is not yet assigned to the function value it is supposed to refer to.

https://sourceacademy.org/sicpjs/1.3.2#footnote-2
https://sourceacademy.org/sicpjs/4.3.1#footnote-4
https://sourceacademy.org/sicpjs/4.3.1#footnote-4

	Changes compared to Vanilla Source §1
	Syntax
	Function Attributes
	Dynamic Type Checking
	Source Imports Modules
	Standard Libraries

