
Specification of Source §4 Explicit-Control—2021 edition

Martin Henz, Lee Ning Yuan, Daryl Tan

National University of Singapore
School of Computing

April 16, 2024

The language Source is the official language of the textbook Structure and Interpretation of
Computer Programs, JavaScript Adaptation. Source is a sublanguage of ECMAScript 2018 (9th

Edition) and defined in the documents titled “Source §x”, where x refers to the respective textbook
chapter.

1 Changes

The language Source is the official language of the textbook Structure and Interpretation of
Computer Programs, JavaScript Adaptation. Source is a sublanguage of ECMAScript 2018 (9th

Edition) and defined in the documents titled “Source §x”, where x refers to the respective textbook
chapter.
Source §4 Explicit-Control is a variant of Source §4 that uses the CSE Machine to evaluate
programs instead of the JavaScript backend.

2 Syntax

A Source program is a program, defined using Backus-Naur Form1 as follows:

1We adopt Henry Ledgard’s BNF variant that he described in A human engineered variant of BNF, ACM SIGPLAN
Notices, Volume 15 Issue 10, October 1980, Pages 57-62. In our grammars, we use bold font for keywords, italics for
syntactic variables, ϵ for nothing, x | y for x or y, [x] for an optional x, x... for zero or more repetitions of x, and (x) for
clarifying the structure of BNF expressions.

https://sourceacademy.org/sicpjs/
https://sourceacademy.org/sicpjs/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://sourceacademy.org/sicpjs/
https://sourceacademy.org/sicpjs/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 2

program ::= import-directive... statement... program

import-directive ::= import { import-names } from string ; import directive

import-names ::= ϵ | import-name (, import-name)... import name list

import-name ::= name | name as name import name

statement ::= const name = expression ; constant declaration
| let ; variable declaration
| function name (rest-names) block function declaration
| return expression ; return statement
| if-statement conditional statement
| while (expression) block while loop
| for ((expression1 | let);

expression2 ;

expression3) block for loop
| break ; break statement
| continue ; continue statement
| block block statement
| expression ; expression statement
| debugger ; breakpoint

names ::= ϵ | name (, name)... name list

rest-names ::= ϵ | ...name | name (, name)... [, ...name] name list (rest)

if-statement ::= if (expression) block
[else (block | if-statement)] conditional statement

block ::= { statement... } block statement

let ::= let name = expression variable declaration

assignment ::= name = expression variable assignment
| expression[expression] = expression array assignment

expression ::= number primitive number expression
| true | false primitive boolean expression
| string primitive string expression
| null primitive list expression
| name name expression
| expression binary-operator expression binary operator combination
| unary-operator expression unary operator combination
| expression binary-logical expression logical composition
| expression (spread-expressions) function application
| (name | (rest-names)) => expression lambda expression (expr. body)
| (name | (rest-names)) => block lambda expression (block body)
| expression ? expression : expression conditional expression
| assignment assignment
| expression[expression] array access
| [expressions] literal array expression
| (expression) parenthesised expression

binary-operator ::= + | - | * | / | % | === | !==
| > | < | >= | <= binary operator

unary-operator ::= ! | - unary operator

binary-logical ::= && | || logical composition symbol

expressions ::= ϵ | expression (, expression)... element expressions

spread-expressions ::= ϵ | spread-expression (, spread-expression)... argument expressions

spread-expression ::= expression | ... expression argument expression (spread)

https://sourceacademy.org/sicpjs/3.1.1#p6
https://sourceacademy.org/sicpjs/1.1.2#p2
https://sourceacademy.org/sicpjs/3.1.1#p3
https://sourceacademy.org/sicpjs/1.1.4#p4
https://sourceacademy.org/sicpjs/1.1.4#p4
https://sourceacademy.org/sicpjs/1.3.2#p13
https://sourceacademy.org/sicpjs/4.1.2#ex_4.7
https://sourceacademy.org/sicpjs/4.1.2#ex_4.8
https://sourceacademy.org/sicpjs/4.1.2#ex_4.9
https://sourceacademy.org/sicpjs/4.1.2#ex_4.8
https://sourceacademy.org/sicpjs/4.1.2#ex_4.7
https://sourceacademy.org/sicpjs/4.1.2#ex_4.7
https://sourceacademy.org/sicpjs/1.1.8#p14
https://sourceacademy.org/sicpjs/1.1.1#p3
https://sourceacademy.org/sicpjs/1.1.4#p4
https://sourceacademy.org/sicpjs/1.1.4#p4
https://sourceacademy.org/sicpjs/3.4.2#p17
https://sourceacademy.org/sicpjs/1.3.3#footnote-1
https://sourceacademy.org/sicpjs/1.3.2#p12
https://sourceacademy.org/sicpjs/1.1.8#p14
https://sourceacademy.org/sicpjs/3.1.1#p3
https://sourceacademy.org/sicpjs/3.1.1#p4
https://sourceacademy.org/sicpjs/1.1.1#p3
https://sourceacademy.org/sicpjs/1.1.6#p1
https://sourceacademy.org/sicpjs/2.3.1
https://sourceacademy.org/sicpjs/2.2.1#p1
https://sourceacademy.org/sicpjs/1.1.2
https://sourceacademy.org/sicpjs/1.1.1#p5
https://sourceacademy.org/sicpjs/1.1.6#p4
https://sourceacademy.org/sicpjs/1.1.6#p5
https://sourceacademy.org/sicpjs/1.1.4#p5
https://sourceacademy.org/sicpjs/1.3.2
https://sourceacademy.org/sicpjs/2.2.4#footnote-3
https://sourceacademy.org/sicpjs/1.1.6#p1
https://sourceacademy.org/sicpjs/1.1.1#p6
https://sourceacademy.org/sicpjs/1.1.1#p4
https://sourceacademy.org/sicpjs/1.1.6#p4
https://sourceacademy.org/sicpjs/1.1.6#p5
https://sourceacademy.org/sicpjs/1.1.4#p5
https://sourceacademy.org/sicpjs/1.1.4#p5
https://sourceacademy.org/sicpjs/1.1.4#p5
https://sourceacademy.org/sicpjs/3.4.2#p17

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 3

Restrictions

• Return statements are only allowed in bodies of functions.

• There cannot be any newline character between return and expression in return state-
ments.2

• There cannot be any newline character between (name | (parameters)) and => in function
definition expressions.3

• Implementations of Source are allowed to treat function declaration as syntactic sugar for
constant declaration.4 Source programmers need to make sure that functions are not called
before their corresponding function declaration is evaluated.

Import directives

Import directives allow programs to import values from modules and bind them to names, whose
scope is the entire program in which the import directive occurs. Import directives can only
appear at the top-level. All names that appear in import directives must be distinct, and must
also be distinct from all top-level variables. The Source specifications do not specify how modules
are programmed.

Logical Composition

Conjunction

expression1 && expression2

stands for
expression1 ? expression2 : false

Disjunction

expression1 || expression2

stands for
expression1 ? true : expression2

Loops

while-loops

Roughly speaking, while loops are seen as abbreviations for function applications as follows:

while (expression) block

stands for

function _body() { block }
_while(() => expression , _body);

where _while is defined as follows:

function _while(test, body) {
if (test()) {

body();
_while(test, body);

} else {
undefined;

}
}

2Source inherits this syntactic quirk of JavaScript.
3ditto
4ECMAScript prescribes “hoisting” of function declarations to the beginning of the surrounding block. Programs

that rely on this feature will run fine in JavaScript but might encounter a runtime error “Cannot access name before
initialization” in a Source implementation.

https://sourceacademy.org/sicpjs/1.3.2#footnote-2
https://sourceacademy.org/sicpjs/1.3.2#footnote-2
https://sourceacademy.org/sicpjs/1.1.6#p4
https://sourceacademy.org/sicpjs/1.1.6#p4
https://sourceacademy.org/sicpjs/4.1.2#ex_4.7

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 4

Simple for-loops

for (assignment1; expression ; assignment2) block

stands for

assignment1
while (expression) {

block
assignment2

}

for-loops with loop control variable

for (let name = expression1; expression2 ; assignment) block

stands for

{
let name = expression1;
for (name = name; expression2; assignment) {

const _copy_of_name = name;
{

const name = _copy_of_name;
block

}
}

}

Return values, break and continue

Contrary to the simplified explanation above, while and for loops return the value of their last
loop execution, or undefined if there is no loop execution. Evaluation of a break statement
within a loop terminates the loop with the return value undefined and evaluation of a continue
statement within a loop terminates the current loop iteration and evaluates the test.

Names

Names5 start with _, $ or a letter6 and contain only _, $, letters or digits7. Restricted words8 are
not allowed as names.
Valid names are x, _45, $$ and π, but always keep in mind that programming is communicating
and that the familiarity of the audience with the characters used in names is an important aspect
of program readability.

Numbers

We use decimal notation for numbers, with an optional decimal dot. “Scientific notation” (multi-
plying the number with 10x) is indicated with the letter e, followed by the exponent x. Examples
for numbers are 5432, -5432.109, and -43.21e-45.

5In ECMAScript 2020 (9th Edition), these names are called identifiers.
6By letter we mean Unicode letters (L) or letter numbers (NI).
7By digit we mean characters in the Unicode categories Nd (including the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), Mn,

Mc and Pc.
8By restricted word we mean any of: arguments, await, break, case, catch, class, const, continue, debugger,

default, delete, do, else, enum, eval, export, extends, false, finally, for, function, if, implements, import,
in, instanceof, interface, let, new, null, package, private, protected, public, return, static, super, switch,
this, throw, true, try, typeof, var, void, while, with, yield. These are all words that cannot be used without
restrictions as names in the strict mode of ECMAScript 2020.

https://sourceacademy.org/sicpjs/4.1.2#ex_4.8
https://sourceacademy.org/sicpjs/4.1.2#ex_4.9
https://sourceacademy.org/sicpjs/4.1.2#ex_4.7
https://sourceacademy.org/sicpjs/4.1.2#ex_4.7
https://sourceacademy.org/sicpjs/1.1.1#p3
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://unicode.org/reports/tr44/
http://unicode.org/reports/tr44/

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 5

Strings

Strings are of the form "double-quote-characters", where double-quote-characters is a possi-
bly empty sequence of characters without the character " and without the newline character,
of the form ’single-quote-characters’, where single-quote-characters is a possibly empty se-
quence of characters without the character ’ and without the newline character, and of the form
‘backquote-characters‘, where backquote-characters is a possibly empty sequence of characters
without the character ‘. Note that newline characters are allowed as backquote-characters.
The following characters can be represented in strings as given:

• horizontal tab: \t

• vertical tab: \v

• nul char: \0

• backspace: \b

• form feed: \f

• newline: \n

• carriage return: \r

• single quote: \’

• double quote: \"

• backslash: \\

Unicode characters can be used in strings using \u followed by the hexadecimal representation
of the unicode character, for example ’\uD83D\uDC04’.

Arrays

Arrays in Source are created using literal array expressions:

let my_array_1 = [];
let my_array_2 = [42, 71, 13];

Array access of the form a[i] has constant time complexity Θ(1). Array assignment the form
a[n] = x has a time complexity O(n).

Comments

In Source, any sequence of characters between “/*” and the next “*/” is ignored.
After “//” any characters until the next newline character is ignored.

3 Dynamic Type Checking

Expressions evaluate to numbers, boolean values, strings, arrays or function values. Implemen-
tations of Source generate error messages when unexpected values are used as follows.
Only function values can be applied using the syntax:

expression ::= name(expressions)

For compound functions, implementations need to check that the number of expressions matches
the number of parameters.
The following table specifies what arguments Source’s operators take and what results they
return. Implementations need to check the types of arguments and generate an error message
when the types do not match.

https://sourceacademy.org/sicpjs/2.3.1
https://sourceacademy.org/sicpjs/2.2.3#footnote-8

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 6

operator argument 1 argument 2 result
+ number number number
+ string string string
- number number number
* number number number
/ number number number
% number number number

=== any any bool
!== any any bool
> number number bool
> string string bool
< number number bool
< string string bool
>= number number bool
>= string string bool
<= number number bool
<= string string bool
&& bool any any
|| bool any any
! bool bool
- number number

Preceding ? and following if, Source only allows boolean expressions.
In array access arr[key], only arrays are allowed as arr and only integers are allowed as key.
Array indices in Source are limited to integers i in the range 0 ≤ i < 232 − 1.
Pairs in Source are represented by arrays with two elements. Therefore,

is_pair([1, 2]);

and

equal(pair(1, 2), [1, 2]);

evaluate to true.
Access of an array with an array index to which no prior assignment has been made on the array
returns undefined.

4 Standard Libraries

The following libraries are always available in this language.

MISC Library

The following names are provided by the MISC library:

• get_time(): primitive, returns number of milliseconds elapsed since January 1, 1970
00:00:00 UTC

• parse_int(s, i): primitive, interprets the string s as an integer, using the positive integer
i as radix, and returns the respective value, see ECMAScript Specification, Section 18.2.5.

• undefined, NaN, Infinity: primitive, refer to JavaScript’s undefined, NaN (“Not a Number”)
and Infinity values, respectively.

• is_boolean(x), is_number(x), is_string(x), is_undefined(x), is_function(x): prim-
itive, returns true if the type of x matches the function name and false if it does not.
Following JavaScript, we specify that is_number returns true for NaN and Infinity.

• prompt(s): primitive, pops up a window that displays the string s, provides an input line
for the user to enter a text, a “Cancel” button and an “OK” button. The call of prompt
suspends execution of the program until one of the two buttons is pressed. If the “OK”
button is pressed, prompt returns the entered text as a string. If the “Cancel” button is
pressed, prompt returns a non-string value.

https://sourceacademy.org/sicpjs/1.2.6#ex_1.22
https://www.ecma-international.org/ecma-262/9.0/index.html#sec-parseint-string-radix
https://sourceacademy.org/sicpjs/2.4.3#p6
https://www.ecma-international.org/ecma-262/9.0/index.html#sec-value-properties-of-the-global-object-nan
https://www.ecma-international.org/ecma-262/9.0/index.html#sec-value-properties-of-the-global-object-infinity
https://sourceacademy.org/sicpjs/4.1.2#p2
https://sourceacademy.org/sicpjs/2.3.2#p5
https://sourceacademy.org/sicpjs/2.3.2#p7
https://sourceacademy.org/sicpjs/4.1.2#p2

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 7

• display(x): primitive, displays the value x in the console9; returns the argument a.

• display(x, s): primitive, displays the string s, followed by a space character, followed by
the value x in the console9; returns the argument x.

• error(x): primitive, displays the value x in the console9 with error flag. The evaluation of
any call of error aborts the running program immediately.

• error(x, s): primitive, displays the string s, followed by a space character, followed by
the value x in the console9 with error flag. The evaluation of any call of error aborts the
running program immediately.

• stringify(x): primitive, returns a string that represents9 the value x.

All library functions can be assumed to run in O(1) time, except display, error and stringify,
which run in O(n) time, where n is the size (number of components such as pairs) of their first
argument.

MATH Library

The following names are provided by the MATH library:

• math_name, where name is any name specified in the JavaScript Math library, see
ECMAScript Specification, Section 20.2. Examples:

– math_PI: primitive, refers to the mathematical constant π,

– math_sqrt(n): primitive, returns the square root of the number n.

All math functions can be assumed to run in O(1) time and are considered primitive. All math
functions expect numbers as arguments and return numbers. We don’t specify the behavior of a
math function when some arguments are not numbers.

List Support

The following list processing functions are supported:

• pair(x, y): primitive, makes a pair from x and y.

• is_pair(x): primitive, returns true if x is a pair and false otherwise.

• head(x): primitive, returns the head (first component) of the pair x.

• tail(x): primitive, returns the tail (second component) of the pair x.

• is_null(xs): primitive, returns true if xs is the empty list null, and false otherwise.

• is_list(x): primitive, returns true if x is a list as defined in the lectures, and false
otherwise. Iterative process; time: O(n), space: O(1), where n is the length of the chain of
tail operations that can be applied to x.

• list(x1, x2,..., xn): primitive, returns a list with n elements. The first element is x1,
the second x2, etc. Iterative process; time: O(n), space: O(n), since the constructed list
data structure consists of n pairs, each of which takes up a constant amount of space.

• draw_data(x1, x2,..., xn): primitive, visualizes each x1, x2,..., xn in a separate
drawing area in the Source Academy using a box-and-pointer diagram; time, space: O(n),
where n is the combined number of data structures such as pairs in x1, x2,..., xn.

• equal(x1, x2): Returns true if both have the same structure with respect to pair, and
the same numbers, boolean values, functions or empty list at corresponding leave positions
(places that are not themselves pairs), and false otherwise; time, space: O(n), where n is
the number of pairs in x.

9The notation used for the display of values is consistent with JSON, but also displays undefined and function
objects.

https://sourceacademy.org/sicpjs/1.2.6#footnote-7
https://sourceacademy.org/sicpjs/1.2.6#footnote-7
https://sourceacademy.org/sicpjs/2.1.3#footnote-2
https://sourceacademy.org/sicpjs/3.3.4#p24
https://sourceacademy.org/sicpjs/1.1.4#p8
https://www.ecma-international.org/ecma-262/9.0/index.html#sec-math-object
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 8

• length(xs): Returns the length of the list xs. Iterative process; time: O(n), space: O(1),
where n is the length of xs.

• map(f, xs): Returns a list that results from list xs by element-wise application of f. Iter-
ative process; time: O(n), space: O(n), where n is the length of xs.

• build_list(f, n): Makes a list with n elements by applying the unary function f to the
numbers 0 to n - 1. Iterative process; time: O(n), space: O(n).

• for_each(f, xs): Applies f to every element of the list xs, and then returns true. Iterative
process; time: O(n), space: O(1), where n is the length of xs.

• list_to_string(xs): Returns a string that represents list xs using the text-based box-
and-pointer notation [...].

• reverse(xs): Returns list xs in reverse order. Iterative process; time: O(n), space: O(n),
where n is the length of xs. The process is iterative, but consumes space O(n) because of
the result list.

• append(xs, ys): Returns a list that results from appending the list ys to the list xs.
Iterative process; time: O(n), space: O(n), where n is the length of xs.

• member(x, xs): Returns first postfix sublist whose head is identical to x (===); returns []
if the element does not occur in the list. Iterative process; time: O(n), space: O(1), where n
is the length of xs.

• remove(x, xs): Returns a list that results from xs by removing the first item from xs that
is identical (===) to x. Iterative process; time: O(n), space: O(n), where n is the length of xs.

• remove_all(x, xs): Returns a list that results from xs by removing all items from xs that
are identical (===) to x. Iterative process; time: O(n), space: O(n), where n is the length of
xs.

• filter(pred, xs): Returns a list that contains only those elements for which the one-
argument function pred returns true. Iterative process; time: O(n), space: O(n), where n
is the length of xs.

• enum_list(start, end): Returns a list that enumerates numbers starting from start
using a step size of 1, until the number exceeds (>) end. Iterative process; time: O(n),
space: O(n), where n is the length of xs.

• list_ref(xs, n): Returns the element of list xs at position n, where the first element has
index 0. Iterative process; time: O(n), space: O(1), where n is the length of xs.

• accumulate(op, initial, xs): Applies binary function op to the elements of xs from
right-to-left order, first applying op to the last element and the value initial, resulting in
r1, then to the second-last element and r1, resulting in r2, etc, and finally to the first element
and rn−1, where n is the length of the list. Thus, accumulate(op,zero,list(1,2,3))
results in op(1, op(2, op(3, zero))). Iterative process; time: O(n), space: O(n), where
n is the length of xs, assuming op takes constant time.

Pair Mutators

The following pair mutator functions are supported:

• set_head(p, x): primitive, changes the pair p such that its head is x. Returns undefined.

• set_tail(p, x): primitive, changes the pair p such that its tail is x. Returns undefined.

Array Support

The following array processing functions are supported:

• array_length(x): primitive, returns the current length of array x, which is 1 plus the
highest index i that has been used so far in an array assignment on x.

• is_array(x): primitive, returns returns true if x is an array, and false if it is not.

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 9

Stream Support

The following stream processing functions are supported:

• stream(x1, x2,..., xn): primitive, returns a stream with n elements. The first element
is x1, the second x2, etc.
Laziness: No: In this implementation, we generate first a complete list, and then a stream
using list_to_stream.

• stream_tail(x): Assumes that the tail (second component) of the pair x is a nullary func-
tion, and returns the result of applying that function.
Laziness: Yes: stream_tail only forces the direct tail of a given stream, but not the rest of
the stream, i.e. not the tail of the tail, etc.

• is_stream(x): Returns true if x is a stream as defined in the lectures, and false other-
wise.
Laziness: No: is_stream needs to force the given stream.

• list_to_stream(xs): transforms a given list to a stream.
Laziness: Yes: list_to_stream goes down the list only when forced.

• stream_to_list(s): transforms a given stream to a list.
Laziness: No: stream_to_list needs to force the whole stream.

• stream_length(s): Returns the length of the stream s.
Laziness: No: The function needs to force the whole stream.

• stream_map(f, s): Returns a stream that results from stream s by element-wise applica-
tion of f.
Laziness: Yes: The argument stream is only explored as forced by the result stream.

• build_stream(n, f): Makes a stream with n elements by applying the unary function f
to the numbers 0 to n - 1.
Laziness: Yes: The result stream forces the applications of fun for the next element.

• stream_for_each(f, s): Applies f to every element of the stream s, and then returns
true.
Laziness: No: stream_for_each forces the exploration of the entire stream.

• stream_reverse(s): Returns finite stream s in reverse order. Does not terminate for
infinite streams.
Laziness: No: stream_reverse forces the exploration of the entire stream.

• stream_append(xs, ys): Returns a stream that results from appending the stream ys to
the stream xs.
Laziness: Yes: Forcing the result stream activates the actual append operation.

• stream_member(x, s): Returns first postfix substream whose head is equal to x (===);
returns null if the element does not occur in the stream.
Laziness: Sort-of: stream_member forces the stream only until the element is found.

• stream_remove(x, s): Returns a stream that results from given stream s by removing the
first item from s that is equal (===) to x. Returns the original list if there is no occurrence.
Laziness: Yes: Forcing the result stream leads to construction of each next element.

• stream_remove_all(x, s): Returns a stream that results from given stream s by remov-
ing all items from s that are equal (===) to x.
Laziness: Yes: The result stream forces the construction of each next element.

• stream_filter(pred, s): Returns a stream that contains only those elements for which
the one-argument function pred returns true.
Laziness: Yes: The result stream forces the construction of each next element. Of course,
the construction of the next element needs to go down the stream until an element is found
for which pred holds.

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 10

• enum_stream(start, end): Returns a stream that enumerates numbers starting from
start using a step size of 1, until the number exceeds (>) end.
Laziness: Yes: Forcing the result stream leads to the construction of each next element.

• integers_from(n): Constructs an infinite stream of integers starting at a given number n.
Laziness: Yes: Forcing the result stream leads to the construction of each next element.

• eval_stream(s, n): Constructs the list of the first n elements of a given stream s.
Laziness: Sort-of: eval_stream only forces the computation of the first n elements, and
leaves the rest of the stream untouched.

• stream_ref(s, n): Returns the element of stream s at position n, where the first element
has index 0.
Laziness: Sort-of: stream_ref only forces the computation of the first n elements, and
leaves the rest of the stream untouched.

Continuation Support

The following functions are supported for generating and consuming continuations:

• call_cc(f): primitive, generates a coninuation cont and calls f(cont). This is an atomic
operation.

Interpreter Support

• apply_in_underlying_javascript(f, xs): primitive, calls the function f with argu-
ments xs. For example:

function times(x, y) {
return x * y;

}
apply_in_underlying_javascript(times, list(2, 3)); // returns 6

• tokenize(x): primitive, returns the list of tokens that results from tokenizing the string x
as a Source program. Each token is a string that contains the characters of the token as
they appear in the program. Comments are ignored.

• parse(x): primitive, returns the parse tree that results from parsing the string x as a
Source program. The following two pages describe the shape of the parse tree. The tree is
represented by the tagged lists on the right; the angle brackets denote recursive application
of the transformation rules. Implementations are allowed to support more of JavaScript
than listed.

In addition, the Source Academy frontend predeclares the name __PROGRAM__ in all Source
languages to refer to the string representation of the entrypoint file of the program in the editor
that is being run using “Run”. The entrypoint file is the file containing the code that acts as the
entrypoint of the program being run. If __PROGRAM__ is used in the REPL, it refers to the string
representation of the editor content at the time when “Run” was last pressed.

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 11

program ::= statement . . . list("sequence", list of ⟨statement⟩)
statement ::= const name = expression ; list("constant_declaration", ⟨name⟩, ⟨expression⟩)

| let ; see below
| function name (parameters) block list("function_declaration", ⟨name⟩, ⟨parameters⟩, ⟨block⟩)
| return expression ; list("return_statement", ⟨expression⟩)
| if-statement see below
| while (expression) block list("while_loop", ⟨expression⟩, ⟨block⟩)
| for ((expression1 | let);

expression2 ; list("for_loop", ⟨expression1⟩ or ⟨let⟩, ⟨expression2⟩, ⟨expression3⟩,
expression3) block ⟨block⟩)

| break ; list("break_statement")

| continue ; list("continue_statement")

| block see below
| expression ; see below

parameters ::= ϵ | name (, name) . . . list of ⟨name⟩
if-statement ::= if (expression) block1

else (block2 | if-statement) list("conditional_statement", ⟨expression⟩,
⟨block1⟩, ⟨block2⟩ or ⟨if-statement⟩)

block ::= { program } list("block", ⟨program⟩)
let ::= let name = expression list("variable_declaration", ⟨name⟩, ⟨expression⟩)

assignment ::= name = expression list("assignment", ⟨name⟩, ⟨expression⟩)
| expression1[expression2] = expression3; list("object_assignment", ⟨expression1[expression2]⟩, ⟨expression3⟩)

https://sourceacademy.org/sicpjs/1.3.3#footnote-1

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 12

expression ::= number list("literal", number)
| true list("literal", true)

| false list("literal", false)

| null list("literal", null)

| string list("literal", string)
| name list("name", string)

| expression1 log-op expression2 list("logical_composition", ⟨log-op⟩, ⟨expression1⟩, ⟨expression2⟩)
| expression1 bin-op expression2 list("binary_operator_combination", ⟨bin-op⟩, ⟨expression1⟩, ⟨expression2⟩)
| un-op expression list("unary_operator_combination", ⟨un-op⟩, ⟨expression⟩)
| expression (expressions) list("application", ⟨expression⟩, list of ⟨expression⟩)
| (name | (parameters)) => expression list("lambda_expression", ⟨parameters⟩,

list("return_statement", ⟨expression⟩))
| (name | (parameters)) => block list("lambda_expression", ⟨parameters⟩, ⟨statement⟩)
| expression1 ? expression2 : expression3 list("conditional_expression", ⟨expression1⟩,

⟨expression2⟩, ⟨expression3⟩)
| assignment ;
| expression1[expression2] list("object_access", ⟨expression1⟩, ⟨expression2⟩)
| [expressions] list("array_expression", list of ⟨expression⟩)
| (expression) treat as: expression

log-op ::= && | || string representing operator

bin-op ::= + | - | * | / | % | === | !== string representing operator
| < | > | <= | >= string representing operator

un-op ::= ! "!"

| - "-unary"

expressions ::= ϵ | expression (, expression) . . . list of ⟨expression⟩

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 13

Deviations from JavaScript

We intend the Source language to be a conservative extension of JavaScript:
Every correct Source program should behave exactly the same using a Source
implementation, as it does using a JavaScript implementation. We assume,
of course, that suitable libraries are used by the JavaScript implementation,
to account for the predefined names of each Source language.
This section lists some exceptions where we think a Source implementation
should be allowed to deviate from the JavaScript specification, for the sake
of internal consistency and esthetics.

Evaluation result of programs: JavaScript statically distinguishes between value-
producing and non-value-producing statements. All declarations are
non-value-producing, and all expression statements, conditional state-
ments and assignments are value-producing. A block is value-producing
if its body statement is value-producing, and then its value is the value
of its body statement. A sequence is value-producing if any of its com-
ponent statements is value-producing, and then its value is the value
of its last value-producing component statement. The value of an ex-
pression statement is the value of the expression. The value of a con-
ditional statement is the value of the branch that gets executed, or the
value undefined if that branch is not value-producing. The value of an
assignment is the value of the expression to the right of its = sign. Fi-
nally, if the whole program is not value-producing, its value is the value
undefined.

Example 1:

1;
{

// empty block
}

The result of evaluating this program in JavaScript is 1.

Example 2:

1;
{

if (true) {} else {}
}

The result of evaluating this program in JavaScript is undefined.

Implementations of Source are currently allowed to opt for a simpler
scheme.

Hoisting of function declarations: In JavaScript, function declarations are “hoisted”
(automagically moved) to the beginning of the block in which they ap-
pear. This means that applications of functions that are declared with

https://sourceacademy.org/sicpjs/4.1.1#footnote-4
https://sourceacademy.org/sicpjs/1.3.2#footnote-2
https://sourceacademy.org/sicpjs/4.3.1#footnote-4

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 14

function declaration statements never fail because the name is not yet
assigned to their function value. The specification of Source does not
include this hoisting; in Source, function declaration can be seen as
syntactic sugar for constant declaration and lambda expression. As a
consequence, application of functions declared with function declara-
tion may fail in Source if the name that appears as function expression
is not yet assigned to the function value it is supposed to refer to.

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 15

Appendix: List library

Those list library functions that are not primitive functions are pre-declared
as follows:
// list.js START

/**
* makes a pair whose head (first component) is <CODE>x</CODE>

* and whose tail (second component) is <CODE>y</CODE>.

* @param {value} x - given head

* @param {value} y - given tail

* @returns {pair} pair with <CODE>x</CODE> as head and <CODE>y</CODE> as tail.

*/
function pair(x, y) {}

/**
* returns <CODE>true</CODE> if <CODE>x</CODE> is a

* pair and false otherwise.

* @param {value} x - given value

* @returns {boolean} whether <CODE>x</CODE> is a pair

*/
function is_pair(x) {}

/**
* returns head (first component) of given pair <CODE>p</CODE>

* @param {pair} p - given pair

* @returns {value} head of <CODE>p</CODE>

*/
function head(p) {}

/**
* returns tail (second component of given pair <CODE>p</CODE>

* @param {pair} p - given pair

* @returns {value} tail of <CODE>p</CODE>

*/
function tail(p) {}

/**
* returns <CODE>true</CODE> if <CODE>x</CODE> is the

* empty list <CODE>null</CODE>, and <CODE>false</CODE> otherwise.

* @param {value} x - given value

* @returns {boolean} whether <CODE>x</CODE> is <CODE>null</CODE>

*/
function is_null(x) {}

/**
* Returns <CODE>true</CODE> if

* <CODE>xs</CODE> is a list as defined in the textbook, and

* <CODE>false</CODE> otherwise. Iterative process;

* time: <CODE>O(n)</CODE>, space: <CODE>O(1)</CODE>, where <CODE>n</CODE>

* is the length of the

* chain of <CODE>tail</CODE> operations that can be applied to <CODE>xs</CODE>.

* recurses down the list and checks that it ends with the empty list null

* @param {value} xs - given candidate

* @returns whether {xs} is a list

*/
function is_list(xs) {}

/**
* Given <CODE>n</CODE> values, returns a list of length <CODE>n</CODE>.

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 16

* The elements of the list are the given values in the given order.

* @param {value} value1,value2,...,value_n - given values

* @returns {list} list containing all values

*/
function list(value1, value2, ...values) {}

/**
* visualizes <CODE>x</CODE> in a separate drawing

* area in the Source Academy using a box-and-pointer diagram; time, space:

* O(n), where n is the total number of data structures such as

* pairs in all the separate structures provided in <CODE>x</CODE>.

* @param {value} value1,value2,...,value_n - given values

* @returns {value} given <CODE>x</CODE>

*/
function draw_data(value1, value2, ...values) {}

/**
* Returns <CODE>true</CODE> if both

* have the same structure with respect to <CODE>pair</CODE>,

* and identical values at corresponding leave positions (places that are not

* themselves pairs), and <CODE>false</CODE> otherwise. For the "identical",

* the values need to have the same type, otherwise the result is

* <CODE>false</CODE>. If corresponding leaves are boolean values, these values

* need to be the same. If both are <CODE>undefined</CODE> or both are

* <CODE>null</CODE>, the result is <CODE>true</CODE>. Otherwise they are compared

* with <CODE>===</CODE> (using the definition of <CODE>===</CODE> in the

* respective Source language in use). Time, space:

* <CODE>O(n)</CODE>, where <CODE>n</CODE> is the number of pairs in

* <CODE>x</CODE>.

* @param {value} x - given value

* @param {value} y - given value

* @returns {boolean} whether <CODE>x</CODE> is structurally equal to <CODE>y</CODE>

*/
function equal(xs, ys) {

return is_pair(xs)
? (is_pair(ys) &&

equal(head(xs), head(ys)) &&
equal(tail(xs), tail(ys)))

: is_null(xs)
? is_null(ys)
: is_number(xs)
? (is_number(ys) && xs === ys)
: is_boolean(xs)
? (is_boolean(ys) && ((xs && ys) || (!xs && !ys)))
: is_string(xs)
? (is_string(ys) && xs === ys)
: is_undefined(xs)
? is_undefined(ys)
: // we know now that xs is a function

(is_function(ys) && xs === ys);
}

/**
* Returns the length of the list

* <CODE>xs</CODE>.

* Iterative process; time: <CODE>O(n)</CODE>, space:

* <CODE>O(1)</CODE>, where <CODE>n</CODE> is the length of <CODE>xs</CODE>.

* @param {list} xs - given list

* @returns {number} length of <CODE>xs</CODE>

*/

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 17

function length(xs) {
return $length(xs, 0);

}
function $length(xs, acc) {

return is_null(xs) ? acc : $length(tail(xs), acc + 1);
}

/**
* Returns a list that results from list

* <CODE>xs</CODE> by element-wise application of unary function <CODE>f</CODE>.

* Iterative process; time: <CODE>O(n)</CODE>,

* space: <CODE>O(n)</CODE>, where <CODE>n</CODE> is the length of <CODE>xs</CODE>.

* <CODE>f</CODE> is applied element-by-element:

* <CODE>map(f, list(1, 2))</CODE> results in <CODE>list(f(1), f(2))</CODE>.

* @param {function} f - unary

* @param {list} xs - given list

* @returns {list} result of mapping

*/
function map(f, xs) {

return $map(f, xs, null);
}
function $map(f, xs, acc) {

return is_null(xs)
? reverse(acc)
: $map(f, tail(xs), pair(f(head(xs)), acc));

}

/**
* Makes a list with <CODE>n</CODE>

* elements by applying the unary function <CODE>f</CODE>

* to the numbers 0 to <CODE>n - 1</CODE>, assumed to be a nonnegative integer.

* Iterative process; time: <CODE>O(n)</CODE>, space: <CODE>O(n)</CODE>.

* @param {function} f - unary function

* @param {number} n - given nonnegative integer

* @returns {list} resulting list

*/
function build_list(fun, n) {

return $build_list(n - 1, fun, null);
}
function $build_list(i, fun, already_built) {

return i < 0 ? already_built : $build_list(i - 1, fun, pair(fun(i), already_built));
}

/**
* Applies unary function <CODE>f</CODE> to every

* element of the list <CODE>xs</CODE>.

* Iterative process; time: <CODE>O(n)</CODE>, space: <CODE>O(1)</CODE>,

* Where <CODE>n</CODE> is the length of <CODE>xs</CODE>.

* <CODE>f</CODE> is applied element-by-element:

* <CODE>for_each(fun, list(1, 2))</CODE> results in the calls

* <CODE>fun(1)</CODE> and <CODE>fun(2)</CODE>.

* @param {function} f - unary

* @param {list} xs - given list

* @returns {boolean} true

*/

function for_each(fun, xs) {
if (is_null(xs)) {

return true;

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 18

} else {
fun(head(xs));
return for_each(fun, tail(xs));

}
}

/**
* Returns a string that represents

* list <CODE>xs</CODE> using the text-based box-and-pointer notation

* <CODE>[...]</CODE>.

* @param {list} xs - given list

* @returns {string} <CODE>xs</CODE> converted to string

*/
function list_to_string(xs) {

return $list_to_string(xs, x => x);
}
function $list_to_string(xs, cont) {

return is_null(xs)
? cont("null")
: is_pair(xs)
? $list_to_string(

head(xs),
x => $list_to_string(

tail(xs),
y => cont("[" + x + "," + y + "]")))

: cont(stringify(xs));
}

/**
* Returns list <CODE>xs</CODE> in reverse

* order. Iterative process; time: <CODE>O(n)</CODE>,

* space: <CODE>O(n)</CODE>, where <CODE>n</CODE> is the length of <CODE>xs</CODE>.

* The process is iterative, but consumes space <CODE>O(n)</CODE>

* because of the result list.

* @param {list} xs - given list

* @returns {list} <CODE>xs</CODE> in reverse

*/
function reverse(xs) {

return $reverse(xs, null);
}
function $reverse(original, reversed) {

return is_null(original)
? reversed
: $reverse(tail(original), pair(head(original), reversed));

}

/**
* Returns a list that results from

* appending the list <CODE>ys</CODE> to the list <CODE>xs</CODE>.

* Iterative process; time: <CODE>O(n)</CODE>, space:

* <CODE>O(n)</CODE>, where <CODE>n</CODE> is the length of <CODE>xs</CODE>.

* In the result, null at the end of the first argument list

* is replaced by the second argument, regardless what the second

* argument consists of.

* @param {list} xs - given first list

* @param {list} ys - given second list

* @returns {list} result of appending <CODE>xs</CODE> and <CODE>ys</CODE>

*/
function append(xs, ys) {

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 19

return $append(xs, ys, xs => xs);
}
function $append(xs, ys, cont) {

return is_null(xs)
? cont(ys)
: $append(tail(xs), ys, zs => cont(pair(head(xs), zs)));

}

/**
* Returns first postfix sublist

* whose head is identical to

* <CODE>v</CODE> (using <CODE>===</CODE>); returns <CODE>null</CODE> if the

* element does not occur in the list.

* Iterative process; time: <CODE>O(n)</CODE>,

* space: <CODE>O(1)</CODE>, where <CODE>n</CODE> is the length of <CODE>xs</CODE>.

* @param {value} v - given value

* @param {list} xs - given list

* @returns {list} postfix sublist that starts with <CODE>v</CODE>

*/
function member(v, xs) {

return is_null(xs)
? null
: (v === head(xs))
? xs
: member(v, tail(xs));

}

/** Returns a list that results from

* <CODE>xs</CODE> by removing the first item from <CODE>xs</CODE> that

* is identical (<CODE>===</CODE>) to <CODE>v</CODE>.

* Returns the original

* list if there is no occurrence. Iterative process;

* time: <CODE>O(n)</CODE>, space: <CODE>O(n)</CODE>, where <CODE>n</CODE>

* is the length of <CODE>xs</CODE>.

* @param {value} v - given value

* @param {list} xs - given list

* @returns {list} <CODE>xs</CODE> with first occurrence of <CODE>v</CODE> removed

*/
function remove(v, xs) {

return $remove(v, xs, null);
}
function $remove(v, xs, acc) {

return is_null(xs)
? append(reverse(acc), xs)
: v === head(xs)
? append(reverse(acc), tail(xs))
: $remove(v, tail(xs), pair(head(xs), acc));

}

/**
* Returns a list that results from

* <CODE>xs</CODE> by removing all items from <CODE>xs</CODE> that

* are identical (<CODE>===</CODE>) to <CODE>v</CODE>.

* Returns the original

* list if there is no occurrence.

* Iterative process;

* time: <CODE>O(n)</CODE>, space: <CODE>O(n)</CODE>, where <CODE>n</CODE>

* is the length of <CODE>xs</CODE>.

* @param {value} v - given value

* @param {list} xs - given list

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 20

* @returns {list} <CODE>xs</CODE> with all occurrences of <CODE>v</CODE> removed

*/
function remove_all(v, xs) {

return $remove_all(v, xs, null);
}
function $remove_all(v, xs, acc) {

return is_null(xs)
? append(reverse(acc), xs)
: v === head(xs)
? $remove_all(v, tail(xs), acc)
: $remove_all(v, tail(xs), pair(head(xs), acc));

}

/**
* Returns a list that contains

* only those elements for which the one-argument function

* <CODE>pred</CODE>

* returns <CODE>true</CODE>.

* Iterative process;

* time: <CODE>O(n)</CODE>, space: <CODE>O(n)</CODE>,

* where <CODE>n</CODE> is the length of <CODE>xs</CODE>.

* @param {function} pred - unary function returning boolean value

* @param {list} xs - given list

* @returns {list} list with those elements of <CODE>xs</CODE> for which <CODE>pred</CODE> holds.

*/
function filter(pred, xs) {

return $filter(pred, xs, null);
}
function $filter(pred, xs, acc) {

return is_null(xs)
? reverse(acc)
: pred(head(xs))
? $filter(pred, tail(xs), pair(head(xs), acc))
: $filter(pred, tail(xs), acc);

}

/**
* Returns a list that enumerates

* numbers starting from <CODE>start</CODE> using a step size of 1, until

* the number exceeds (<CODE>></CODE>) <CODE>end</CODE>.

* Iterative process;

* time: <CODE>O(n)</CODE>, space: <CODE>O(n)</CODE>,

* where <CODE>n</CODE> is <CODE>end - start</CODE>.

* @param {number} start - starting number

* @param {number} end - ending number

* @returns {list} list from <CODE>start</CODE> to <CODE>end</CODE>

*/
function enum_list(start, end) {

return $enum_list(start, end, null);
}
function $enum_list(start, end, acc) {

return start > end
? reverse(acc)
: $enum_list(start + 1, end, pair(start, acc));

}

/**
* Returns the element

* of list <CODE>xs</CODE> at position <CODE>n</CODE>,

* where the first element has index 0.

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 21

* Iterative process;

* time: <CODE>O(n)</CODE>, space: <CODE>O(1)</CODE>,

* where <CODE>n</CODE> is the length of <CODE>xs</CODE>.

* @param {list} xs - given list

* @param {number} n - given position

* @returns {value} item in <CODE>xs</CODE> at position <CODE>n</CODE>

*/
function list_ref(xs, n) {

return n === 0
? head(xs)
: list_ref(tail(xs), n - 1);

}

/** Applies binary

* function <CODE>f</CODE> to the elements of <CODE>xs</CODE> from

* right-to-left order, first applying <CODE>f</CODE> to the last element

* and the value <CODE>initial</CODE>, resulting in <CODE>r</CODE>₁,

* then to the

* second-last element and <CODE>r</CODE>₁, resulting in

* <CODE>r</CODE>₂,

* etc, and finally

* to the first element and <CODE>r</CODE>_{n-1}, where

* <CODE>n</CODE> is the length of the

* list. Thus, <CODE>accumulate(f,zero,list(1,2,3))</CODE> results in

* <CODE>f(1, f(2, f(3, zero)))</CODE>.

* Iterative process;

* time: <CODE>O(n)</CODE>, space: <CODE>O(n)</CODE>,

* where <CODE>n</CODE> is the length of <CODE>xs</CODE>

* assuming <CODE>f</CODE> takes constant time.

* @param {function} f - binary function

* @param {value} initial - initial value

* @param {list} xs - given list

* @returns {value} result of accumulating <CODE>xs</CODE> using <CODE>f</CODE> starting with <CODE>initial</CODE>

*/
function accumulate(f, initial, xs) {

return $accumulate(f, initial, xs, x => x);
}
function $accumulate(f, initial, xs, cont) {

return is_null(xs)
? cont(initial)
: $accumulate(f, initial, tail(xs), x => cont(f(head(xs), x)));

}

/**
* Optional second argument.

* Similar to <CODE>display</CODE>, but formats well-formed lists nicely if detected.

* @param {value} xs - list structure to be displayed

* @param {string} s to be displayed, preceding <CODE>xs</CODE>

* @returns {value} xs, the first argument value

*/
function display_list(xs, s) {}

//

// list.js END

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 22

Appendix: Stream library

Those stream library functions that are not primitive functions are pre-declared
as follows:
// stream.js START

// Supporting streams in the Scheme style, following
// "stream discipline"

/**
* assumes that the tail (second component) of the

* pair {x} is a nullary function, and returns the result of

* applying that function. Throws an exception if the argument

* is not a pair, or if the tail is not a function.

* Laziness: Yes: {stream_tail} only forces the direct tail

* stream, but not the rest of the stream, i.e. not the tail

* of the tail, etc.

* @param {Stream} xs - given stream

* @returns {Stream} result stream (if stream discipline is used)

*/

function stream_tail(xs) {
if (is_pair(xs)) {

const the_tail = tail(xs);
if (is_function(the_tail)) {

return the_tail();
} else {

error(the_tail,
’stream_tail(xs) expects a function as ’ +
’the tail of the argument pair xs, ’ +
’but encountered ’);

}
} else {

error(xs, ’stream_tail(xs) expects a pair as ’ +
’argument xs, but encountered ’);

}
}

/**
* Returns <CODE>true</CODE> if

* <CODE>xs</CODE> is a stream as defined in the textbook, and

* <CODE>false</CODE> otherwise. Iterative process;

* time: <CODE>O(n)</CODE>, space: <CODE>O(1)</CODE>, where <CODE>n</CODE>

* is the length of the

* chain of <CODE>stream_tail</CODE> operations that can be applied to <CODE>xs</CODE>.

* recurses down the stream and checks that it ends with the empty stream null.

* Laziness: No: <CODE>is_stream</CODE> needs to force the given stream.

* @param {value} xs - given candidate

* @returns {boolean} whether <CODE>xs</CODE> is a stream

*/

function is_stream(xs) {
return is_null(xs) ||

(is_pair(xs) &&
is_function(tail(xs)) &&
arity(tail(xs)) === 0 &&
is_stream(stream_tail(xs)));

}

/**

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 23

* Given list <CODE>xs</CODE>, returns a stream of same length with

* the same elements as <CODE>xs</CODE> in the same order.

* Laziness: Yes: <CODE>list_to_stream</CODE>

* goes down the list only when forced.

* @param {list} xs - given list

* @returns {stream} stream containing all elements of <CODE>xs</CODE>

*/

function list_to_stream(xs) {
return is_null(xs)

? null
: pair(head(xs),

() => list_to_stream(tail(xs)));
}

/**
* Given stream <CODE>xs</CODE>, returns a list of same length with

* the same elements as <CODE>xs</CODE> in the same order.

* Laziness: No: <CODE>stream_to_list</CODE> needs to force the whole

* stream.

* @param {stream} xs - stream

* @returns {list} containing all elements of <CODE>xs</CODE>

*/

function stream_to_list(xs) {
return is_null(xs)

? null
: pair(head(xs), stream_to_list(stream_tail(xs)));

}

/**
* Given <CODE>n</CODE> values, returns a stream of length <CODE>n</CODE>.

* The elements of the stream are the given values in the given order.

* Lazy? No: A

* complete list is generated,

* and then a stream using <CODE>list_to_stream</CODE> is generated from it.

* @param {value} value1,value2,...,value_n - given values

* @returns {stream} stream containing all values

*/

function stream() {
var the_list = null
for (var i = arguments.length - 1; i >= 0; i--) {

the_list = pair(arguments[i], the_list)
}
return list_to_stream(the_list)

}

/**
* Returns the length of the stream

* <CODE>xs</CODE>.

* Iterative process; time: <CODE>O(n)</CODE>, space:

* <CODE>O(1)</CODE>, where <CODE>n</CODE> is the length of <CODE>xs</CODE>.

* Lazy? No: The function needs to explore the whole stream

* @param {stream} xs - given stream

* @returns {number} length of <CODE>xs</CODE>

*/

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 24

function stream_length(xs) {
return is_null(xs)

? 0
: 1 + stream_length(stream_tail(xs));

}

/**
* Returns a stream that results from stream

* <CODE>xs</CODE> by element-wise application

* of unary function <CODE>f</CODE>.

* <CODE>f</CODE> is applied element-by-element:

* <CODE>stream_map(f, stream(1,2))</CODE> results in

* the same as <CODE>stream(f(1),f(2))</CODE>.

* Lazy? Yes: The argument stream is only explored as forced by

* the result stream.

* @param {function} f - unary

* @param {stream} xs - given stream

* @returns {stream} result of mapping

*/
function stream_map(f, s) {

return is_null(s)
? null
: pair(f(head(s)),

() => stream_map(f, stream_tail(s)));
}

/**
* Makes a stream with <CODE>n</CODE>

* elements by applying the unary function <CODE>f</CODE>

* to the numbers 0 to <CODE>n - 1</CODE>, assumed to be a nonnegative integer.

* Lazy? Yes: The result stream forces the application of <CODE>f</CODE>

* for the next element

* @param {function} f - unary function

* @param {number} n - given nonnegative integer

* @returns {stream} resulting stream

*/

function build_stream(fun, n) {
function build(i) {

return i >= n
? null
: pair(fun(i),

() => build(i + 1));
}
return build(0);

}

/**
* Applies unary function <CODE>f</CODE> to every

* element of the stream <CODE>xs</CODE>.

* Iterative process; time: <CODE>O(n)</CODE>, space: <CODE>O(1)</CODE>,

* Where <CODE>n</CODE> is the length of <CODE>xs</CODE>.

* <CODE>f</CODE> is applied element-by-element:

* <CODE>stream_for_each(f, stream(1, 2))</CODE> results in the calls

* <CODE>f(1)</CODE> and <CODE>f(2)</CODE>.

* Lazy? No: <CODE>stream_for_each</CODE>

* forces the exploration of the entire stream

* @param {function} f - unary

* @param {stream} xs - given stream

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 25

* @returns {boolean} true

*/

function stream_for_each(fun, xs) {
if (is_null(xs)) {

return true;
} else {

fun(head(xs));
return stream_for_each(fun, stream_tail(xs));

}
}

/**
* Returns stream <CODE>xs</CODE> in reverse

* order. Iterative process; time: <CODE>O(n)</CODE>,

* space: <CODE>O(n)</CODE>, where <CODE>n</CODE> is the length of <CODE>xs</CODE>.

* The process is iterative, but consumes space <CODE>O(n)</CODE>

* because of the result stream.

* Lazy? No: <CODE>stream_reverse</CODE>

* forces the exploration of the entire stream

* @param {stream} xs - given stream

* @returns {stream} <CODE>xs</CODE> in reverse

*/

function stream_reverse(xs) {
function rev(original, reversed) {

return is_null(original)
? reversed
: rev(stream_tail(original),

pair(head(original), () => reversed));
}
return rev(xs, null);

}

/**
* Returns a stream that results from

* appending the stream <CODE>ys</CODE> to the stream <CODE>xs</CODE>.

* In the result, null at the end of the first argument stream

* is replaced by the second argument, regardless what the second

* argument consists of.

* Lazy? Yes: the result stream forces the actual append operation

* @param {stream} xs - given first stream

* @param {stream} ys - given second stream

* @returns {stream} result of appending <CODE>xs</CODE> and <CODE>ys</CODE>

*/

function stream_append(xs, ys) {
return is_null(xs)

? ys
: pair(head(xs),

() => stream_append(stream_tail(xs), ys));
}

/**
* Returns first postfix substream

* whose head is identical to

* <CODE>v</CODE> (using <CODE>===</CODE>); returns <CODE>null</CODE> if the

* element does not occur in the stream.

* Iterative process; time: <CODE>O(n)</CODE>,

* space: <CODE>O(1)</CODE>, where <CODE>n</CODE> is the length of <CODE>xs</CODE>.

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 26

* Lazy? Sort-of: <CODE>stream_member</CODE>

* forces the stream only until the element

* is found.

* @param {value} v - given value

* @param {stream} xs - given stream

* @returns {stream} postfix substream that starts with <CODE>v</CODE>

*/

function stream_member(x, s) {
return is_null(s)

? null
: head(s) === x

? s
: stream_member(x, stream_tail(s));

}

/** Returns a stream that results from

* <CODE>xs</CODE> by removing the first item from <CODE>xs</CODE> that

* is identical (<CODE>===</CODE>) to <CODE>v</CODE>.

* Returns the original

* stream if there is no occurrence.

* Lazy? Yes: the result stream forces the construction of each next element

* @param {value} v - given value

* @param {stream} xs - given stream

* @returns {stream} <CODE>xs</CODE> with first occurrence of <CODE>v</CODE> removed

*/

function stream_remove(v, xs) {
return is_null(xs)

? null
: v === head(xs)

? stream_tail(xs)
: pair(head(xs),

() => stream_remove(v, stream_tail(xs)));
}

/**
* Returns a stream that results from

* <CODE>xs</CODE> by removing all items from <CODE>xs</CODE> that

* are identical (<CODE>===</CODE>) to <CODE>v</CODE>.

* Returns the original

* stream if there is no occurrence.

* Recursive process.

* Lazy? Yes: the result stream forces the construction of each next

* element

* @param {value} v - given value

* @param {stream} xs - given stream

* @returns {stream} <CODE>xs</CODE> with all occurrences of <CODE>v</CODE> removed

*/

function stream_remove_all(v, xs) {
return is_null(xs)

? null
: v === head(xs)

? stream_remove_all(v, stream_tail(xs))
: pair(head(xs), () => stream_remove_all(v, stream_tail(xs)));

}

/**
* Returns a stream that contains

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 27

* only those elements of given stream <CODE>xs</CODE>

* for which the one-argument function

* <CODE>pred</CODE>

* returns <CODE>true</CODE>.

* Lazy? Yes: The result stream forces the construction of

* each next element. Of course, the construction

* of the next element needs to go down the stream

* until an element is found for which <CODE>pred</CODE> holds.

* @param {function} pred - unary function returning boolean value

* @param {stream} xs - given stream

* @returns {stream} stream with those elements of <CODE>xs</CODE> for which <CODE>pred</CODE> holds.

*/

function stream_filter(p, s) {
return is_null(s)

? null
: p(head(s))

? pair(head(s),
() => stream_filter(p, stream_tail(s)))

: stream_filter(p, stream_tail(s));
}

/**
* Returns a stream that enumerates

* numbers starting from <CODE>start</CODE> using a step size of 1, until

* the number exceeds (<CODE>></CODE>) <CODE>end</CODE>.

* Lazy? Yes: The result stream forces the construction of

* each next element

* @param {number} start - starting number

* @param {number} end - ending number

* @returns {stream} stream from <CODE>start</CODE> to <CODE>end</CODE>

*/

function enum_stream(start, end) {
return start > end

? null
: pair(start,

() => enum_stream(start + 1, end));
}

/**
* Returns infinite stream if integers starting

* at given number <CODE>n</CODE> using a step size of 1.

* Lazy? Yes: The result stream forces the construction of

* each next element

* @param {number} start - starting number

* @returns {stream} infinite stream from <CODE>n</CODE>

*/

function integers_from(n) {
return pair(n,

() => integers_from(n + 1));
}

/**
* Constructs the list of the first <CODE>n</CODE> elements

* of a given stream <CODE>s</CODE>

* Lazy? Sort-of: <CODE>eval_stream</CODE> only forces the computation of

* the first <CODE>n</CODE> elements, and leaves the rest of

* the stream untouched.

SICP, JavaScript Adaptation, Source §4 Explicit-Control, 2021 28

* @param {stream} s - given stream

* @param {number} n - nonnegative number of elements to place in result list

* @returns {list} result list

*/

function eval_stream(s, n) {
function es(s, n) {

return n === 1
? list(head(s))
: pair(head(s),

es(stream_tail(s), n - 1));
}
return n === 0

? null
: es(s, n);

}

/**
* Returns the element

* of stream <CODE>xs</CODE> at position <CODE>n</CODE>,

* where the first element has index 0.

* Iterative process;

* time: <CODE>O(n)</CODE>, space: <CODE>O(1)</CODE>,

* where <CODE>n</CODE> is the length of <CODE>xs</CODE>.

* Lazy? Sort-of: <CODE>stream_ref</CODE> only forces the computation of

* the first <CODE>n</CODE> elements, and leaves the rest of

* the stream untouched.

* @param {stream} xs - given stream

* @param {number} n - given position

* @returns {value} item in <CODE>xs</CODE> at position <CODE>n</CODE>

*/

function stream_ref(s, n) {
return n === 0

? head(s)
: stream_ref(stream_tail(s), n - 1);

}

//

// stream.js END

	Changes
	Syntax
	Dynamic Type Checking
	Standard Libraries

